随机分析及其应用 第3版

随机分析及其应用 第3版

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

本书是随机分析方面的名著之一。以主题广泛丰富,论述简洁易懂而又不失严密著称。书中阐述了各领域的典型应用,包括数理金融、生物学、工程学中的模型。还提供了很多示例和习题,并附有解答。读者对象:数学分析及金融数学专业的高年级本科生,研究生和研究人员。

作者简介

Fima C. Klebaner (F. C. 克莱巴纳)是世界百强名校,澳大利亚学府,莫纳什大学(Monash University)知名教授。

章节目录

Preface

1.Preliminaries From Calculus

1.1 Fhnctions in Calculus

1.2 Variation of a Function

1.3 Riemann Integral and Stieltjes Integral

1.4 Lebesgue's Method of Integration

1.5 Differentials and Integrals

1.6 Taylor's Formula and Other Results

2.Concepts of Probability Theory

2.1 Discrete Probability Model

2.2 Continuous Probability Model

2.3 Expectation and Lebesgue Integral

2.4 Transforms and Convergence

2.5 Independence and Covariance

2.6 Normal (Gaussian) Distributions

2.7 Conditional Expectation

2.8 Stochastic Processes in Continuous Time

3.Basic Stochastic Processes

3.1 Brownian Motion

3.2 Properties of Brownian Motion Paths

3.3 Three Martingales of Brownian Motion

3.4 Markov Property of Brownian Motion

3.5 Hitting Times and Exit Times

3.6 Maximum and Minimum of Brownian Motion

3.7 Distribution of Hitting Times

3.8 Reflection Principle and Joint Distributions

3.9 Zeros of Brownian Motion —— Arcsine Law

3.10 Size of Increments of Brownian Motion

3.11 Brownian Motion in Higher Dimensions

3.12 Random Walk

3.13 Stochastic Integral in Discrete Time

3.14 Poisson Process

3.15 Exercises

4.Brownian Motion Calculus

4.1 Definition of It5 Integral

4.2 It5 Integral Process

4.3 It5 Integral and Gaussian Processes

4.4 ItS's Formula for Brownian Motion

4.5 It5 Processes and Stochastic Differentials

4.6 ItS's Formula for It5 Processes

4.7 It5 Processes in Higher Dimensions

4.8 Exercises

5.Stochastic Differential Equations

5.1 Definition of Stochastic Differential

Equations (SDEs)

5.2 Stochastic Exponential and Logarithm

5.3 Solutions to Linear SDEs

5.4 Existence and Uniqueness of Strong Solutions

5.5 Markov Property of Solutions

5.6 Weak Solutions to SDEs

5.7 Construction of Weak Solutions

5.8 Backward and Forward Equations

5.9 Stratonovich Stochastic Calculus

5.10 Exercises

6.Diffusion Processes

6.1 Martingales and Dynkin's Formula

6.2 Calculation of Expectations and PDEs

6.3 Time-Homogeneous Diffusions

6.4 Exit Times from an Interval

6.5 Representation of Solutions of ODES

6.6 Explosion

6.7 Recurrence and Transience

6.8 Diffusion on an Interval

6.9 Stationary Distributions

6.10 Multi-dimensional SDEs

6.11 Exercises

7.Martingales

7.1 Definitions

7.2 Uniform Integrability

7.3 Martingale Convergence

7.4 Optional Stopping

7.5 Localization and Local Martingales

7.6 Quadratic Variation of Martingales

7.7 Martingale Inequalities

7.8 Continuous Martingales —— Change of Time

7.9 Exercises

8.Calculus For Semimartingales

8.1 Semimartingales

8.2 Predictable Processes

8.3 Doob-Meyer Decomposition

8.4 Integrals with Respect to Semimartingales

8.5 Quadratic Variation and Covariation

8.6 ItS's Formula for Continuous Semimartingales

8.7 Local Times

8.8 Stochastic Exponential

8.9 Compensators and Sharp Bracket Process

8.10 It6's Formula for Semimartingales

8.11 Stochastic Exponential and Logarithm

8.12 Martingale (Predictable) Representations

8.13 Elements of the General Theory

8.14 Random Measures and Canonical Decomposition

8.15 Exercises

9.Pure Jump Processes

9.1 Definitions

9.2 Pure Jump Process Filtration

9.3 Ito's Formula for Processes of Finite Variation

9.4 Counting Processes

9.5 Markov Jump Processes

9.6 Stochastic Equation for Jump Processes

9.7 Generators and Dynkin's Formula

9.8 Explosions in Markov Jump Processes

9.9 Exercises

10.Change of Probability Measure

10.1 Change of Measure for Random Variables

10.2 Change of Measure on a General Space

10.3 Change of Measure for Processes

10.4 Change of Wiener Measure

10.5 Change of Measure for Point Processes

10.6 Likelihood Functions

10.7 Exercises

11.Applications in Finance: Stock and FX Options

11.1 Financial Derivatives and Arbitrage

11.2 A Finite Market Model

11.3 Semimartingale Market Model

11.4 Diffusion and the Black Scholes Model

11.5 Change of Numeraire

11.6 Currency (FX) Options

11.7 Asian, Lookback, and Barrier Options

11.8 Exercises

12.Applications in Finance: Bonds, Rates, and Options

12.1 Bonds and the Yield Curve

12.2 Models Adapted to Brownian Motion

12.3 Models Based on the Spot Rate

12.4 Merton's Model and Vasicek's Model

12.5 Heath-Jarrow Morton (HJM) Model

12.6 Forward Measures —— Bond as a Numeraire

12.7 Options, Caps, and Floors

12.8 Brace-Gatarek Musiela (BGM) Model

12.9 Swaps and Swaptions

12.10 Exercises

13.Applications in Biology

13.1 Feller's Branching Diffusion

13.2 Wright-Fisher Diffusion

13.3 Birth-Death Processes

13.4 Growth of Birth-Death Processes

13.5 Extinction, Probability, and Time to Exit

13.6 Processes in Genetics

13.7 Birth-Death Processes in Many Dimensions

13.8 Cancer Models

13.9 Branching Processes

13.10 Stochastic Lotka-Volterra Model

13.11 Exercises

14.Applications in Engineering and Physics

14.1 Filtering

14.2 Random Oscillators

14.3 Exercises

Solutions to Selected Exercises

References

Index

随机分析及其应用 第3版是2018年由世界图书出版公司出版,作者[澳]F.。

得书感谢您对《随机分析及其应用 第3版》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
现代分析基础(第3版) 电子书
本书共6章,内容包括:基本知识、Fourier变换、Schwartz函数和缓增广义函数、调和函数、奇异积分算子、小波分析初步。
差分进化算法及其高维多目标优化应用 电子书
本书从群智能优化算法和高维多目标优化两方面入手,一方面系统地介绍了差分进化算法的基本原理及国内外研究现状,通过分析算法的模型、关键步骤及参数设置,设计和构建了高性能的改进算法,并将其应用于医学图像处理、电子商务等实际工程领域;另一方面,深入分析了高维多目标优化算法的基本原理、国内外研究现状及关键技术难点,详细描述了基于差分进化算法的高维多目标优化算法设计、构建与实验分析,以及其在智能交通系统中的实
简明临床血气分析(第3版) 电子书
对与临床攸关的血气分析基础理论作了重点阐述。
稀疏插值及其在多项式代数中的应用 电子书
本书主要介绍了稀疏插值算法及其在多项式代数中的应用,包括经典的稀疏插值算法和改进算法,以及其在多元多项式方程组求解、多元多项式最大公因式计算、组合几何优化问题上的应用。本书是为数学、计算数学和计算机科学专业的高年级本科生和低年级研究生编写的著作,也可供相关专业的学生、教师及科技工作者参考。
数值分析简明教程(第2版) 电子书
本书共7章,具体包括:绪论、非线性方程的求根方法、线性方程组的解法、求矩阵特征值和特征向量的方法、插值与拟合方法、数值积分与数值微分方法、常微分方程初值问题数值解法。本书可以作为非数学专业理工科大学生和研究生学习数值分析课程的教材,也可以供相关科研人员和对数值分析感兴趣的读者参考。