实用时间序列分析(影印版 英文版)

实用时间序列分析(影印版 英文版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

  随着物联网、数字医疗、智慧城市的兴起,时间序列数据分析变得越来越重要。随着持续监测和数据收集变得越来越普遍,对通过统计和机器学习技术进行时间序列分析的需求将会增长。

  《实用时间序列分析(影印版)》涵盖了时间序列数据分析的创新成果和现实世界的案例,使用传统统计方法和现代机器学习技术,帮你应对时间序列中常见的数据工程和分析挑战。作者Aileen Nielsen用R和Python语言对时间序列进行了全面且通俗易懂的介绍,数据科学家、软件工程师和研究人员都可以很快上手并投入使用。

作者简介

  艾琳·尼尔森(Aileen Nielsen),是一名为纽约市服务的软件工程师和数据分析师。从医疗创业到政治竞选,从物理研究实验室到金融交易公司,她在多个领域从事时间序列研究。她目前正在开发用于预测应用的神经网络。

章节目录

Preface

1.TimeSeries:AnOverviewand aQuickHistory

The History of Time Series in Diverse Applications

Medicine as a Time Series Problem

Forecasting Weather

Forecasting Economic Growth

Astronomy

Time Series Analysis Takes Off

The Origins of Statistical Time Series Analysis

The Origins of Machine Learning Time Series Analysis

More Resources

2.FindingandWranglingTimeSeriesData

where to Find Time Series Data

Prepared Data Sets

Found Time Series

Retrofitting a Time Series Data Collection from a Collection of Tables

A Worked Example:Assembling a Time Series Data Collection

Constructing a Found Time Series

Timestamping Troubles

Whose Timestamp

Guesstimating Timestamps to Make Sense of Data

What’s a Meaningful Time Scale

Cleaning Your Data

Handling Missing Data

Upsampling and Downsampling

Smoothing Data

Seasonal Data

Time Zones

Preventing Lookahead

More Resources

3.ExploratoryDataAnalysisforTimeSeries

Familiar Methods

Plotting

Histograms

Scatter Plots

Time Series-Specific Exploratory Methods

Understanding Stationarity

Applying Window Functions

Understanding and Identifying Self-Correlation

Spurious Correlations

Some Useful Visualizations

lD Visualizations

2D Visualizations

3D Visualizations

More Resources

4.SimulatingTimeSeriesData

What’S Special About Simulating Time Series

Simulation Versus Forecasting

Simulations in Code

Doing the Work Yourself

Building a Simulation Universe That Runs Itself

A Physics Simulation

Final Notes on Simulations

Statistical Simulations

Deep Learning Simulations

More Resources

5.StoringTemporalData

Defining Requirements

Live Data Versus Stored Data

Database Solutions

SQL Versus NoSQL

Popular Time Series Database and File Solutions

File Solutions

NumPv

Pandas

Standard R Equivalents

Xarray

More Resources

6.StatisticaIModelsforTimeSeries

Why Not Use a Linear Regression

Statistical Methods Developed for Time Series

Autoregressive Models

Moving Average Models

Autoregressive Integrated Moving Average Models

Vector Autoregression

Variations on Statistical Models

Advantages and Disadvantages of Statistical Methods for Time Series

More Resources

7.StateSpaceModels for TimeSeries

State Space Models:Pluses and Minuses

The Kalman Filter

Overview

CodefortheKalmanFilter、

Hidden Markov Modds

HOW the Model Works

HOWWeFittheModel

Fitting an HMM in Code

Bayesian Structural Time Series

Code forbsts

More Resources

8.Generating and Selecting FeaturesforaTimeSeries

Introductory Example

General Considerations When Computing Features

The Nature of the Time Series

Domain Knowledge

External Considerations

A Catalog of Places to Find Features for Inspiration

Open Source Time Series Feature Generation Libraries

Domain-Specific Feature Examples

How to Select Features 0nce You Have Generated Them

Concluding Thoughts

More Resources

9.Machine LearningforTime Series

Time Series C:lassification

Selecting and Generating Features

Decision Tree Methods

Clustering

Generating Features from the Data

TemporaUy Aware Distance Metrics

Clustering Code

More Resources

10.Deep LearningforTimeSeries

Deep Learning Concepts

Programming a Neural Network

Data,Symbols,Operations,Layers,and Graphs

Building a Training Pipeline

Inspecting Our Data Set

Steps of a Training Pipeline

Feed Forward Networks

A Simple Example

Using an Attention Mechanism to Make Feed Forward

Networks More Time—Aware

CNNS

A Simple Convolutional Model

Alternative Convolutional Models

RNNS

Continuing Our Electric Example

The Autoencoder Innovation

Combination Architectures

Summing Up

More Resources

11.Measuring Error

The Basics:HoW to Test Forecasts

Model-Specific Considerations for Backtesting

When Is Your Forecast Good Enough

Estimating Uncertainty in Your Model with a Simulation

Predicting Multiple Steps Ahead

Fit Directlv to the Horizon of Interest

Recursive Approach to Distant Temporal Horizons

Multitask Learning Applied to Time Series

Model Validation Gotchas

More Resources

1 2.Performance Considerations in Fitting and Serving Time Series Models

Working with Tools Built for More General Use Cases

Models Built for Cross.Sectional Data Don't Share”Data Across Samples

Models That Don’t Precompute Create Unnecessary Lag Between

Measuring Data and Making a Forecast

Data Storage Formats:Pluses and Minuses

Store Your Data in a Binary Format

Preprocess Your Data in a Way That Allows Yon to“Slide”Over It

Modi研ng Your Analysis to Suit Performance Considerations

Using A11 Your Data Is Not Necessarily Better

Complicated Models Don’t Always Do Better Enough

A Brief Mention of Alternative High—Performance Tools

More Resources

13.HealthcareApplications

Predicting the Flu

A Case Study of Flu in 0ne Metropolitan Area

What Is State of the Art in Flu Forecasting

Predicting Blood Glucose Levels

Data Cleaning and Exploration

Generating Features

Fitting a Model

More Resources

14.FinanciaIApplications

Obtaining and Exploring Financial Data

Preprocessing Financial Data for Deep Learning

Adding Quantities of Interest to Our Raw Values

Scaling Quantities of Interest Without a Lookahead

Formatting 0ur Data for a Neural Network

Building and Training an RNN

More Resources

15.TimeSeriesforGovernment

Obtaining Governmental Data

Exploring Big Time Series Data

Upsample and Aggregate the Data as We Iterate Through It

Sort the Data

0nline Statistical Analysis of Time Series Data

Remaining Questions

Further Improvements

More Resources

16.TimeSeriesPackages

Forecasting at Scale

Google’S Industrial In.house Forecasting

Facebook’S Open Source Prophet Package

Anomaly Detection

Twitter’s Open Source AnomalyDetection Package

Other Time Series Packages

More Resources

17.ForecastsAbout Forecasting

Forecasting as a Service

Deep Learning Enhances Probabilistic Possibilities

Increasing Importance of Machine Learning Rather Than Statistics

Increasing Combination of Statistical and Machine Learning Methodologies

More Forecasts for Everyday Life

Index

实用时间序列分析(影印版 英文版)是2020年由东南大学出版社出版,作者Aileen。

得书感谢您对《实用时间序列分析(影印版 英文版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
时间!你往哪里跑 电子书
本书讲述了宇宙自创生至今一步步的演化过程,并介绍了时间流逝的方向与本质,以及时间旅行的可行性等。
数值分析 电子书
本书由10章组成,主要内容包括:高次代数方程与超越方程数值解法、解线性方程组的直接法与迭代法、插值法、函数最优逼近法、数值积分与数值微分、微分方程数值解法,以及数值计算和数学分析应用软件MATLAB和MATHEMATICA介绍。
仪器分析 电子书
本书分为仪器分析技术基础、光学分析法、电化学分析法、色谱分析法、其他分析法五个模块。
实用老年妇科学 电子书
根据女性年龄特点对有关热点和重点问题进行论述。
实用麻醉技术手册 电子书
本手册全部由临床第一线的医师编写而成,内容丰富,具有极强的实用性。