Machine Learning Design Patterns

Machine Learning Design Patterns:SolutionstoCommonChallengesinDataPreparation,ModelBuilding,andMLOps

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow.

The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation.

You’ll learn how to:

Identify and mitigate common challenges when training, evaluating, and deploying ML models

Represent data for different ML model types, including embeddings, feature crosses, and more

Choose the right model type for specific problems

Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning

Deploy scalable ML systems that you can retrain and update to reflect new data

Interpret model predictions for stakeholders and ensure that models are treating users fairly

作者简介

Valliappa (Lak) Lakshmanan is Global Head for Data Analytics and AI Solutions on Google Cloud. His team builds software solutions for business problems using Google Cloud's data analytics and machine learning products. He founded Google's Advanced Solutions Lab ML Immersion program. Before Google, Lak was a Director of Data Science at Climate Corporation and a Research Scientis...

(展开全部)

Machine Learning Design Patterns是2020年由O'ReillyMedia,Inc.出版,作者ValliappaLakshmanan。

得书感谢您对《Machine Learning Design Patterns》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
演化学习:理论与算法进展 电子书
适读人群 :机器学习、人工智能、进化计算方面的研究人员和算法设计人员,包括科研院所、高校、企业的研究和高级开发人员,以及相关专业方向的研究生。 机器学习知名学者周志华教授新作; 中国高校知名人工智能研究团队20年攻关的新理论成果; 给强大的演化算法找到“所以然”的理论支撑,指导机器学习优化问题的进一步发展; 关键定理详细证明过程以附录形式给出,以供有余力的读者深挖。
Python机器学习经典实例 电子书
用流行的Python库scikitlearn解决机器学习问题。
深度学习:基于Python语言和TensorFlow平台(视频讲解版) 电子书
本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
用Python实现深度学习框架 电子书
本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
场景化机器学习 电子书
本书展示了如何在业务场景中应用机器学习,全书分为三个部分。第一部分介绍有效的决策如何帮助公司提高生产率以保持竞争力,阐释如何使用开源工具和AWS工具将机器学习应用于业务决策中。第二部分以虚拟人物为主线,研究六个场景,这些场景展示了如何使用机器学习来制定各种业务决策。第三部分讨论如何在Web上设置和共享机器学习模型,还介绍了一些案例。