大数据驱动的机械装备智能运维理论及应用

大数据驱动的机械装备智能运维理论及应用

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

智能运维领域科学问题与应用难题解析。

内容简介

本著作面向学科发展前沿与工程迫切需求,围绕机械装备智能运维面临的新挑战:数据大而不全呈“碎片化”、诊断与预测受制于专家经验、智能诊断依赖充足可用数据等,凝练出大数据背景下智能运维领域的科学问题与应用难题,按照“问题-理论-技术-实例”的逻辑主线,详细介绍了监测大数据质量保障、机械装备故障深度智能诊断、机械装备故障迁移智能诊断、数据驱动的机械装备剩余寿命预测等基础理论与核心技术,所述内容兼具前沿性、创新性与工程实用性。旨在将作者团队在智能运维领域的长期经验积累与最新研究成果分享给广大读者,为其开展相关学术研究、解决应用难题提供参考。

章节目录

封面

前折页

版权信息

内容简介

前言

第1章 绪论

1.1 机械监测大数据的形成因素与领域特点

1.1.1 机械监测大数据的形成因素

1.1.2 机械监测大数据的领域特点

1.2 机械装备智能运维的相关概念与研究现状

1.2.1 机械装备运行维护的定义

1.2.2 机械装备智能运维的定义

1.2.3 机械装备智能运维的研究现状

1.3 大数据下智能运维面临的机遇与挑战

参考文献

第2章 机械监测大数据质量保障

2.1 基于无迹卡尔曼滤波的流数据异常检测

2.1.1 无迹卡尔曼滤波基本原理

2.1.2 基于无迹卡尔曼滤波的流数据异常检测方法

2.1.3 滚动轴承流数据的异常检测

2.2 基于核密度异常因子的离线历史数据异常检测

2.2.1 局部异常因子基本原理

2.2.2 基于核密度异常因子的异常数据检测方法

2.2.3 风机主传动系统异常数据检测

2.3 基于张量Tucker分解的缺失数据恢复

2.3.1 张量分解理论

2.3.2 基于张量Tucker分解的缺失数据恢复方法

2.3.3 齿轮箱缺失数据恢复

本章小结

参考文献

第3章 基于传统机器学习的机械装备智能故障诊断

3.1 基于人工神经网络的智能故障诊断

3.1.1 人工神经网络基本原理

3.1.2 机车轮对轴承智能故障诊断

3.2 基于支持向量机的智能故障诊断

3.2.1 支持向量机基本原理

3.2.2 行星齿轮箱智能故障诊断

3.3 混合智能故障诊断

3.3.1 混合智能诊断基本原理

3.3.2 混合智能诊断模型

3.3.3 电动机滚动轴承智能故障诊断

本章小结

参考文献

第4章 基于深度学习的机械装备智能故障诊断

4.1 深度置信网络智能故障诊断

4.1.1 受限玻尔兹曼机基本原理

4.1.2 深度置信网络智能诊断模型

4.1.3 电动机滚动轴承智能故障诊断

4.2 堆叠自编码机智能故障诊断

4.2.1 自编码机基本原理

4.2.2 堆叠自编码机智能诊断模型

4.2.3 行星齿轮箱智能故障诊断

4.3 加权卷积神经网络智能故障诊断

4.3.1 卷积神经网络基本原理

4.3.2 加权卷积网络智能诊断模型

4.3.3 机车轮对轴承智能故障诊断

4.4 残差网络智能故障诊断

4.4.1 残差单元基本原理

4.4.2 基于残差网络的智能诊断模型

4.4.3 行星齿轮箱智能故障诊断

本章小结

参考文献

第5章 机械装备故障迁移智能诊断

5.1 迁移诊断问题

5.1.1 领域与诊断任务

5.1.2 迁移诊断任务类型

5.1.3 迁移智能诊断方法分类

5.2 基于实例加权的迁移智能诊断

5.2.1 TrAdaboost算法描述

5.2.2 基于TrAdaboost算法的迁移诊断策略

5.2.3 行星齿轮箱的跨工况迁移故障诊断

5.3 基于特征分布适配的迁移智能诊断

5.3.1 特征分布适配基本原理

5.3.2 基于特征分布适配的迁移诊断策略

5.3.3 跨装备轴承间的迁移故障诊断

5.4 多核特征空间适配的深度迁移智能诊断

5.4.1 多核植入的最大均值差异

5.4.2 多核特征空间适配的深度迁移诊断模型

5.4.3 跨装备轴承间的迁移故障诊断

5.5 特征分布对抗适配的深度迁移智能诊断

5.5.1 生成对抗网络基本原理

5.5.2 特征分布对抗适配的深度迁移诊断模型

5.5.3 跨工况与跨装备迁移故障诊断

本章小结

参考文献

第6章 数据驱动的机械装备剩余寿命预测

6.1 基于循环神经网络的健康指标构建方法

6.1.1 多域特征提取

6.1.2 特征评价与选择

6.1.3 健康指标构建

6.1.4 滚动轴承健康指标构建

6.2 自适应多核组合相关向量机剩余寿命预测方法

6.2.1 相关向量机基本原理

6.2.2 基于自适应多核组合相关向量机的剩余寿命预测方法

6.2.3 齿轮剩余寿命预测

6.3 深度可分卷积网络构建及剩余寿命预测

6.3.1 可分卷积模块构建

6.3.2 网络结构与剩余寿命预测

6.3.3 滚动轴承剩余寿命预测

6.4 循环卷积神经网络构建及剩余寿命预测

6.4.1 循环卷积神经网络构建

6.4.2 预测不确定性量化

6.4.3 数控机床刀具剩余寿命预测

本章小结

参考文献

后折页

封底

大数据驱动的机械装备智能运维理论及应用是2022年由电子工业出版社出版,作者 杨彬。

得书感谢您对《大数据驱动的机械装备智能运维理论及应用》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
智能变电站运维实用技术 电子书
本书系统讲解了智能变电站的重要内容,共分七章,主要包括智能电子设备、IEC61850、智能变电站综合自动化体系结构、仿真智能变电站综合自动化体系、智能变电站运行维护、异常及事故处理、验收与投运等。
电力设备智能运维中心设计与实践 电子书
本书以电网企业设备运行维护为切入点,提出了一种融合输变配环节的电力设备智能运维模式,阐述了完整的电力设备智能运维中心构建方法及步骤。
SQLServerOnLinux运维实战 电子书
微软MVP携手Linux运维专家倾力奉献,让你从入门到精通。
配网运维 电子书
本书主要围绕配电网巡视、配电网维护及行为规范三个方面,以图解的形式,对配电网设备的巡视维护作业进行说明,对规范配电网运维的现场作业行为及流程具有较强的实用性。
变电站智能巡检机器人现场运维 电子书
本书主要围绕机器人系统简介、项目实施和验收、功能应用、机器人的运维管理、机器人的基本操作及故障处理等方面进行论述,图文并茂地展示机器人相关概念和运维管理业务。