The Elements of Statistical Learning

The Elements of Statistical Learning:DataMining,Inference,andPrediction,SecondEdition

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide" data (p bigger than n), including multiple testing and false discovery rates.

作者简介

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surf...

(展开全部)

The Elements of Statistical Learning是2009年由Springer出版,作者TrevorHastie。

得书感谢您对《The Elements of Statistical Learning》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
R语言医学数据分析实战 电子书
以医学数据为例,讲解如何使用R进行数据分析。
深度学习 电子书
深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
场景化机器学习 电子书
本书展示了如何在业务场景中应用机器学习,全书分为三个部分。第一部分介绍有效的决策如何帮助公司提高生产率以保持竞争力,阐释如何使用开源工具和AWS工具将机器学习应用于业务决策中。第二部分以虚拟人物为主线,研究六个场景,这些场景展示了如何使用机器学习来制定各种业务决策。第三部分讨论如何在Web上设置和共享机器学习模型,还介绍了一些案例。
机器学习及应用(在线实验+在线自测) 电子书
机器学习原理与实例代码,包括决策树、神经网络等11章。
中国政府统计问题研究(社科文献学术文库·经济研究系列) 电子书
深入了解中国政府统计的现状、改革和发展。