风光新能源发电先进预测技术

风光新能源发电先进预测技术

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

本书的研究成果是对作者团队研究成果的系统性总结。

内容简介

风光发电受气象资源影响显著,具有显著的随机性与波动性,大规模、高比例并网对电力系统安全经济运行造成挑战,提升预测精度可有效缓解风光发电不确定性的负面影响,对于促进风光并网消纳、提升风光供电保障能力具有积极意义。另一方面,我国正稳步推进电力市场化改革进程,风光场站作为市场主体,其发电功率预测准确性将直接关乎场站的考核与市场收益。

因此,如何充分利用数值天气预报信息,分析不同时空尺度下风光出力特性,利用先进模型与算法,准确预测风光发电功率,量化评估预测结果的不确定性,是电网调度、风光场站以及预测服务提供商持续关注的重点问题。

本书的主题是对风电、光伏新能源发电的发电量进行预测。主要内容包括风光新能源发电预测背景、风光新能源发电预测基础、风电功率单值预测、光伏功率单值预测、风光新能源发电概率预测、风光新能源发电组合预测和风光新能源发电爬坡事件预测等。

作者简介

作者杨明,山东大学电气工程学院副院长、教授、博士生导师,山东省优秀科技工作者,全球前2%顶尖科学家,国家一流课程负责人;长期从事风光新能源功率预测理论研究。

章节目录

版权信息

本书特点

内容提要

Preface 前言

Chapter 1 第1章 风光新能源发电预测背景

1.1 风光新能源发展现状

1.1.1 风电发展现状

1.1.2 光伏发展现状

1.2 风光新能源发电预测系统发展历程

1.2.1 风电预测系统发展历程

1.2.2 光伏发电功率预测系统发展历程

1.3 风光新能源发电预测意义

1.3.1 新能源发电预测对电力系统安全经济运行的意义

1.3.2 新能源发电预测对电力市场高效运行的意义

1.4 本章小结

Chapter 2 第2章 风光新能源发电预测基础

2.1 数值天气预报技术

2.1.1 概述

2.1.2 全球尺度数值气象模式

2.1.3 中尺度(区域)数值气象模式

2.1.4 面向风光新能源发电预测的电力气象预报

2.2 风光新能源发电预测分类

2.2.1 时间尺度分类

2.2.2 空间尺度分类

2.2.3 预测模型分类

2.2.4 预测形式分类

2.3 风光新能源发电预测基础模型

2.3.1 物理模型

2.3.2 统计模型

2.3.3 机器学习与人工智能模型

2.4 风光新能源发电预测评价体系

2.4.1 单值预测评价

2.4.2 概率预测评价

2.4.3 事件预测评价

2.4.4 考核要求

2.5 本章小结

Chapter 3 第3章 风电功率单值预测

3.1 风电特性分析

3.1.1 气象相依特性

3.1.2 时序波动特性

3.2 风电场功率超短期预测

3.2.1 概述

3.2.2 基本算法原理

3.2.3 基于多变量动态规律建模方法的风电功率单值预测

3.2.4 算例分析

3.3 风电场功率短期预测

3.3.1 概述

3.3.2 基于减法聚类和GK模糊聚类算法的气象条件分类方法

3.3.3 基于气象分类和XGBoost的短期风电场功率预测

3.3.4 算例分析

3.4 风电集群功率预测

3.4.1 概述

3.4.2 时空特征深度挖掘的风电集群功率预测模型

3.4.3 算例分析

3.5 本章小结

Chapter 4 第4章 光伏功率单值预测

4.1 光伏发电特性分析

4.1.1 气象相依特性

4.1.2 时序波动特性

4.2 光伏功率超短期预测

4.2.1 概述

4.2.2 多时间尺度云团移动预测

4.2.3 考虑云遮挡的光伏功率超短期预测

4.2.4 算例分析

4.3 光伏功率短期预测

4.3.1 概述

4.3.2 基于高斯相似度的相似日检索方法

4.3.3 基于相似日检索与Light-GBM的光伏功率预测模型

4.3.4 算例分析

4.4 分布式光伏功率预测

4.4.1 概述

4.4.2 基于小波包算法的分布式光伏功率序列分解

4.4.3 分布式光伏平稳序列插值与波动序列插值过程

4.4.4 算例分析

4.5 本章小结

Chapter 5 第5章 风光新能源发电概率预测

5.1 稀疏贝叶斯学习

5.1.1 概述

5.1.2 SBL原理

5.1.3 基于SBL的新能源功率概率预测——以风电为例

5.1.4 算例分析——以风电为例

5.2 分位数回归

5.2.1 概述

5.2.2 基于非线性分位数回归的新能源发电功率概率预测模型

5.2.3 算例分析——以风电为例

5.3 D-S证据理论

5.3.1 概述

5.3.2 误差条件概率预测

5.3.3 D-S证据理论整合概率分布

5.3.4 算例分析——以风电为例

5.4 核密度估计

5.4.1 概述

5.4.2 基于KDE的新能源发电功率概率预测模型

5.4.3 算例分析——以光伏为例

5.5 本章小结

Chapter 6 第6章 风光新能源发电组合预测

6.1 单值预测组合模型

6.1.1 概述

6.1.2 自适应增强集成模型原理

6.1.3 基于自适应增强的单值集成组合预测

6.1.4 算例分析——以光伏功率预测为例

6.2 概率预测组合模型

6.2.1 概述

6.2.2 扩展BMA模型原理

6.2.3 组合非参数概率预测——以风电为例

6.2.4 算例分析——以风电功率预测为例

6.3 本章小结

Chapter 7 第7章 风光新能源发电爬坡事件预测

7.1 风电爬坡事件预测

7.1.1 概述

7.1.2 风电爬坡事件定义

7.1.3 基于朴素贝叶斯网络的爬坡事件概率预测模型

7.1.4 算例分析

7.2 光伏功率爬坡事件预测

7.2.1 概述

7.2.2 考虑日周期性影响的光伏功率爬坡事件定义

7.2.3 基于信度网络的光伏功率爬坡事件预测

7.2.4 算例分析

7.3 本章小结

参考文献

风光新能源发电先进预测技术是2023年由机械工业出版社出版,作者杨明。

得书感谢您对《风光新能源发电先进预测技术》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
生物质发电技术 电子书
本书为“十二五”职业教育国家规划教材。生物质能源是重要的便于储存和运输的可再生能源,同时,生物质发电技术较为成熟,综合效益较好,近几年发展迅猛。本书共分为生物质能源认知、生物质原料与燃料、生物质直燃发电设备及系统、垃圾焚烧发电设备及系统、生物质直燃发电机组运行、生物质气化发电以及最新生物质能发电技术七个学习项目,详尽阐述生物质燃料特性,生物质直燃发电主要设备及系统流程,垃圾发电主要设备及系统流程,
间歇式新能源发电及并网运行控制 电子书
本书主要论述间歇式新能源发电技术,包括风力发电技术和太阳能发电技术,间歇式新能源发电的接入技术,间歇式新能源发电功率的预测预报技术,间歇式新能源发电控制及“场/站”内监控技术和大规模新能源发电的电网调度及安全稳定控制技术。并详细论述了风光储联合发电系统及并网运行控制运行技术。
2020中国新能源发电并网分析报告 电子书
本书梳理年度发展,总结趋势与特点,通过分析及展望研究,给出行业视角的发展研判和建议。
新能源技术 电子书
本书为普通高等教育“十二五”规划教材。本书在简要介绍有关能量、能源、能量转换与储存、能源评价和能源与环境等有关知识的基础上,详细阐述了有关新能源的知识,包括核能、太阳能、风能、生物质能、地热能、海洋能、氢能等。为适应不同读者群的需要,本书在取材上力求资料新颖、内容广泛,以便为读者提供更多有关新能源的最新信息。同时,本书在叙述上力求通俗易懂,对涉及的相关理论不做深入的探讨。本书可作为普通高等学校本科
光伏发电技术及应用 电子书
《光伏发电技术及应用》从光伏发电系统应用技能要求出发,内容包括太阳能资源获取、光伏电池组件及方阵容量设计、储能技术、光伏直流控制设备、光伏交流控制设备以及典型光伏发电系统设计等。读者通过对本书的学习,能够掌握光伏发电系统组成、太阳能辐射量获取、光伏组件特性、光伏支架结构、铅酸蓄电池容量设计等知识,以及光伏控制器、直流汇流箱、光伏逆变器、交直流配电柜、升压变压器、光伏线缆、光伏接地防雷系统等部件的选