Reinforcement Learning

Reinforcement Learning:AnIntroduction(secondedition)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

作者简介

Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind.

Reinforcement Learning是2018年由ABradfordBook出版,作者RichardS.Sutton。

得书感谢您对《Reinforcement Learning》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
人工智能大冒险:青少年的AI启蒙书 电子书
2022年,智博士的好朋友AI侠突然毫无预兆地失踪了,尝试了各种方式都联系不上,直到有一天,他收到一个快递,里面是一封信和一个按钮,好奇的智博士按下按钮,一阵茉莉花的香味袭来,他晕了过去……
大数据与人工智能导论 电子书
人工智能参考书,大数据挖掘指导书。
深度学习高手笔记·卷1:基础算法 电子书
本书从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。
百面深度学习 算法工程师带你去面试 电子书
适读人群 :本书适合相关专业的在校学生检查和加强对所学知识点的掌握程度,求职者快速复习和补充相关的深度学习知识,以及算法工程师作为工具书随时参阅。此外,非相关专业、但对人工智能或深度学习感兴趣的研究人员,也可以通过本书大致了解一些热门的人工智能应用、深度学习模型背后的核心算法及其思想。 不可不读的深度学习面试宝典《百面机器学习》姊妹篇。 Hulu诚意出品,全面收录135道算法面试题。 一线大厂算法工程师合力创作,直击面试要点。 从算法与模型到多领域应用,全方位解读深度学习。 诚意推荐 吴军 / 《浪潮之巅》《数学之美》作者 华先胜 / 阿里巴巴达摩院人工智能中心主任,IEEE Fellow 李沐 / AWS首席科学家,《动手学深度学习》作者 孙茂松 / 清华大学人工智能研究院常务副院长 本书适合相关专业的在校学生检查和加强对所学知识点的掌握程度,求职者快速复习和补充相关的深度学习知识,以及算法工程师作为工具书随时参阅。此外,非相关专业、但对人工智能或深度学习感兴趣的研究人员,也可以通过本书大致了解一些热门的人工智能应用、深度学习模型背后的核心算法及其思想。
用Python实现深度学习框架 电子书
本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题