Reinforcement Learning

Reinforcement Learning:AnIntroduction(secondedition)

立即阅读
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

作者简介

Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind.

Reinforcement Learning是2018年由ABradfordBook出版,作者RichardS.Sutton。

温馨提示:
得书感谢您对《Reinforcement Learning》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书
你可能喜欢
深度学习高手笔记·卷1:基础算法 电子书
本书从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。
大数据与人工智能导论 电子书
人工智能参考书,大数据挖掘指导书。
用Python实现深度学习框架 电子书
本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
演化学习:理论与算法进展 电子书
适读人群 :机器学习、人工智能、进化计算方面的研究人员和算法设计人员,包括科研院所、高校、企业的研究和高级开发人员,以及相关专业方向的研究生。 机器学习知名学者周志华教授新作; 中国高校知名人工智能研究团队20年攻关的新理论成果; 给强大的演化算法找到“所以然”的理论支撑,指导机器学习优化问题的进一步发展; 关键定理详细证明过程以附录形式给出,以供有余力的读者深挖。
TensorFlow技术解析与实战 电子书
TensorFlow是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。