TensorFlow机器学习项目实战

TensorFlow机器学习项目实战

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

本书是介绍如何在产品中使用TensorFlow的实用教程。

内容简介

TensorFlow是Google所主导的机器学习框架,也是机器学习领域研究和应用的热门对象。

本书主要介绍如何使用TensorFlow库实现各种各样的模型,旨在降低学习门槛,并为读者解决问题提供详细的方法和指导。《TensorFlow机器学习项目实战》全书共10章,分别介绍了TensorFlow基础知识、聚类、线性回归、逻辑回归、不同的神经网络、规模化运行模型以及库的应用技巧。本书适合想要学习和了解 TensorFlow 和机器学习的读者阅读参考。如果读者具备一定的C++和Python的经验,将能够更加轻松地阅读和学习本书。

作者简介

作者Rodolfo Bonnin是一名系统工程师,同时也是阿根廷国立理工大学的博士生。他还在德国斯图加特大学进修过并行编程和图像理解的研究生课程。

他从2005年开始研究高性能计算,并在2008年开始研究和实现卷积神经网络,编写过一个同时支持CPU和GPU的神经网络前馈部分。最近,他一直在进行使用神经网络进行欺诈模式检测的工作,目前正在使用ML技术进行信号分类。

感谢我的妻子和孩子们,尤其感谢他们在我写这本书时表现出的耐心。感谢本书的审稿人,他们让这项工作更专业化。感谢Marcos Boaglio,他安装调试了设备,以使我能完成这本书。

章节目录

版权信息

内容提要

作者简介

审稿人简介

前言

第1章 探索和转换数据

1.1 TensorFlow的主要数据结构——张量

1.1.1 张量的属性——阶、形状和类型

1.1.2 创建新的张量

1.1.3 动手工作——与TensorFlow交互

1.2 处理计算工作流——TensorFlow的数据流图

1.2.1 建立计算图

1.2.2 数据供给

1.2.3 变量

1.2.4 保存数据流图

1.3 运行我们的程序——会话

1.4 基本张量方法

1.4.1 简单矩阵运算

1.4.2 序列

1.4.3 张量形状变换

1.4.4 数据流结构和结果可视化——TensorBoard

1.5 从磁盘读取信息

1.5.1 列表格式——CSV

1.5.2 读取图像数据

1.5.3 加载和处理图像

1.5.4 读取标准TensorFlow格式

1.6 小结

第2章 聚类

2.1 从数据中学习——无监督学习

2.2 聚类的概念

2.3 k均值

2.3.1 k均值的机制

2.3.2 算法迭代判据

2.3.3 k均值算法拆解

2.3.4 k均值的优缺点

2.4 k最近邻

2.4.1 k最近邻算法的机制

2.4.2 k-nn的优点和缺点

2.5 有用的库和使用示例

2.5.1 matplotlib绘图库

2.5.2 scikit-learn数据集模块

2.5.3 人工数据集类型

2.6 例1——对人工数据集的k均值聚类

2.6.1 数据集描述和加载

2.6.2 模型架构

2.6.3 损失函数描述和优化循环

2.6.4 停止条件

2.6.5 结果描述

2.6.6 每次迭代中的质心变化

2.6.7 完整源代码

2.6.8 k均值用于环状数据集

2.7 例2——对人工数据集使用最近邻算法

2.7.1 数据集生成

2.7.2 模型结构

2.7.3 损失函数描述

2.7.4 停止条件

2.7.5 结果描述

2.7.6 完整源代码

2.8 小结

第3章 线性回归

3.1 单变量线性模型方程

3.2 选择损失函数

3.3 最小化损失函数

3.3.1 最小方差的全局最小值

3.3.2 迭代方法:梯度下降

3.4 示例部分

3.4.1 TensorFlow中的优化方法——训练模块

3.4.2 tf.train.Optimizer类

3.4.3 其他Optimizer实例类型

3.5 例1——单变量线性回归

3.5.1 数据集描述

3.5.2 模型结构

3.5.3 损失函数描述和Optimizer

3.5.4 停止条件

3.5.5 结果描述

3.5.6 完整源代码

3.6 例2——多变量线性回归

3.6.1 有用的库和方法

3.6.2 Pandas库

3.6.3 数据集描述

3.6.4 模型结构

3.6.5 损失函数和Optimizer

3.6.6 停止条件

3.6.7 结果描述

3.6.8 完整源代码

3.7 小结

第4章 逻辑回归

4.1 问题描述

4.2 Logistic函数的逆函数——Logit函数

4.2.1 伯努利分布

4.2.2 联系函数

4.2.3 Logit函数

4.2.4 对数几率函数的逆函数——Logistic函数

4.2.5 多类分类应用——Softmax回归

4.3 例1——单变量逻辑回归

4.3.1 有用的库和方法

4.3.2 数据集描述和加载

4.3.3 模型结构

4.3.4 损失函数描述和优化器循环

4.3.5 停止条件

4.3.6 结果描述

4.3.7 完整源代码

4.3.8 图像化表示

4.4 例2——基于skflow单变量逻辑回归

4.4.1 有用的库和方法

4.4.2 数据集描述

4.4.3 模型结构

4.4.4 结果描述

4.4.5 完整源代码

4.5 小结

第5章 简单的前向神经网络

5.1 基本概念

5.1.1 人工神经元

5.1.2 神经网络层

5.1.3 有用的库和方法

5.2 例1——非线性模拟数据回归

5.2.1 数据集描述和加载

5.2.2 数据集预处理

5.2.3 模型结构——损失函数描述

5.2.4 损失函数优化器

5.2.5 准确度和收敛测试

5.2.6 完整源代码

5.2.7 结果描述

5.3 例2——通过非线性回归,对汽车燃料效率建模

5.3.1 数据集描述和加载

5.3.2 数据预处理

5.3.3 模型架构

5.3.4 准确度测试

5.3.5 结果描述

5.3.6 完整源代码

5.4 例3——多类分类:葡萄酒分类

5.4.1 数据集描述和加载

5.4.2 数据集预处理

5.4.3 模型架构

5.4.4 损失函数描述

5.4.5 损失函数优化器

5.4.6 收敛性测试

5.4.7 结果描述

5.4.8 完整源代码

5.5 小结

第6章 卷积神经网络

6.1 卷积神经网络的起源

6.1.1 卷积初探

6.1.2 降采样操作——池化

6.1.3 提高效率——dropout操作

6.1.4 卷积类型层构建办法

6.2 例1——MNIST数字分类

6.2.1 数据集描述和加载

6.2.2 数据预处理

6.2.3 模型结构

6.2.4 损失函数描述

6.2.5 损失函数优化器

6.2.6 准确性测试

6.2.7 结果描述

6.2.8 完整源代码

6.3 例2——CIFAR10数据集的图像分类

6.3.1 数据集描述和加载

6.3.2 数据集预处理

6.3.3 模型结构

6.3.4 损失函数描述和优化器

6.3.5 训练和准确性测试

6.3.6 结果描述

6.3.7 完整源代码

6.4 小结

第7章 循环神经网络和LSTM

7.1 循环神经网络

7.1.1 梯度爆炸和梯度消失

7.1.2 LSTM神经网络

7.1.3 其他RNN结构

7.1.4 TensorFlow LSTM有用的类和方法

7.2 例1——能量消耗、单变量时间序列数据预测

7.2.1 数据集描述和加载

7.2.2 数据预处理

7.2.3 模型结构

7.2.4 损失函数描述

7.2.5 收敛检测

7.2.6 结果描述

7.2.7 完整源代码

7.3 例2——创作巴赫风格的曲目

7.3.1 字符级模型

7.3.2 字符串序列和概率表示

7.3.3 使用字符对音乐编码——ABC音乐格式

7.3.4 有用的库和方法

7.3.5 数据集描述和加载

7.3.6 网络训练

7.3.7 数据集预处理

7.3.8 损失函数描述

7.3.9 停止条件

7.3.10 结果描述

7.3.11 完整源代码

7.4 小结

第8章 深度神经网络

8.1 深度神经网络的定义

8.2 深度网络结构的历史变迁

8.2.1 LeNet 5

8.2.2 Alexnet

8.2.3 VGG模型

8.2.4 第一代Inception模型

8.2.5 第二代Inception模型

8.2.6 第三代Inception模型

8.2.7 残差网络(ResNet)

8.2.8 其他的深度神经网络结构

8.3 例子——VGG艺术风格转移

8.3.1 有用的库和方法

8.3.2 数据集描述和加载

8.3.3 数据集预处理

8.3.4 模型结构

8.3.5 损失函数

8.3.6 收敛性测试

8.3.7 程序执行

8.3.8 完整源代码

8.4 小结

第9章 规模化运行模型——GPU和服务

9.1 TensorFlow中的GPU支持

9.2 打印可用资源和设备参数

9.2.1 计算能力查询

9.2.2 选择CPU用于计算

9.2.3 设备名称

9.3 例1——将一个操作指派给GPU

9.4 例2——并行计算Pi的数值

9.4.1 实现方法

9.4.2 源代码

9.5 分布式TensorFlow

9.5.1 分布式计算组件

9.5.2 创建TensorFlow集群

9.5.3 集群操作——发送计算方法到任务

9.5.4 分布式编码结构示例

9.6 例3——分布式Pi计算

9.6.1 服务器端脚本

9.6.2 客户端脚本

9.7 例4——在集群上运行分布式模型

9.8 小结

第10章 库的安装和其他技巧

10.1 Linux安装

10.1.1 安装要求

10.1.2 Ubuntu安装准备(安装操作的前期操作)

10.1.4 Linux下从源码安装TensorFlow

10.2 Windows安装

10.2.1 经典的Docker工具箱方法

10.2.2 安装步骤

10.3 MacOS X安装

10.4 小结

TensorFlow机器学习项目实战是2017年由人民邮电出版社出版,作者[阿根廷]Rodolfo Bonnin。

得书感谢您对《TensorFlow机器学习项目实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
Python机器学习开发实战 电子书
Python机器学习入门,以实战为重点,配有大量代码和案例,简单、快速、易学。
机器学习算法评估实战 电子书
在机器学习算法的实际应用中,我们不仅要知道算法的原理,也要了解如何评估算法上线服务的可靠性。
Python深度学习与项目实战 电子书
本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
机器学习 电子书
机器学习基础与高级内容全面讲解,实例丰富,易于学习巩固。
TensorFlow技术解析与实战 电子书
TensorFlow是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。