微分几何、李群和对称空间(影印版)

微分几何、李群和对称空间(影印版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

  对齐性空间的研究使我们对微分几何和李群有了更深的了解。例如,在几何中一般性的定理和性质对于齐性空间也成立,并且在这个架构上通常更容易理解和证明。对于李群,相当多的分析或者开始于或者归结到齐性空间(通常是对称空间)上。多年来,对很多数学家来说,这本经典著作已经是、也会继续是这方面资料的标准来源。

  《微分几何、李群和对称空间(影印版)》作者西于聚尔·黑尔加松首先对微分几何做了一个简洁、自足的介绍,然后细心处理了李群的理论基础,其陈述方式自1962年以来成为许多后续作者所采用的标准方式。这为引进和研究对称空间创造了条件,而这正是《微分几何、李群和对称空间(影印版)》的核心部分。

  《微分几何、李群和对称空间(影印版)》的结尾则按照Victor Kac的方法,通过e上单李代数的Killing—Cartan分类和R上单李代数的Cartan分类,对对称空间进行了分类。

  《微分几何、李群和对称空间(影印版)》每章后面都配有丰富且实用的习题,且书后附有全部问题的解答或提示。在这一版中,作者做了一些修正,并添加了一些有益的注记和有用的参考文献。

  Sigurdur Helgason因《微分几何、李群和对称空间(影印版)》和Groups and Geometric Analysis而获Steele奖。

章节目录

PREFACE

PREFACE To THE 2001 PRINTING

SUGGESTIONS To THE READER

SEQUEL To THE PRESENT VOLUME

GROUPS AND GEOMETRIC ANAI VSIS CONTENTS

GEOMETRIC ANALYSIS ON SYMMETRIC SPACES CONTENTs

CHAPTER IElementary Differential Geometry

1.Manifolds

2.Tensor Fields

1.Vector Fields and 1- Forms

2.Tensor Algebra

3.The Grassman Algebra

4.Exterior Differentiation

3.Mappings

1.The Interpretation of the Jacobian

2.Transformation of Vector Fields

3.Effect on Differential Forms

4.Afine Connections

5.Parallelism

6.The Exponential Mapping

7.Covariant Diferentiation

8.The Structural Equations

9.The Riemannian Connection

10.Complete Riemannian Manifolds

11.Isometries

12.Sectional Curvature

13.Riemannian Manifolds of Negative Curvature

14.Totally Geodesic Submanifolds

15.Appendix

1.Topology

2.Mappings of Constant RankExercises and Further ResultsNotes

CHAPTER IILie Groups and Lie Algebras

1.The Exponential Mapping

1.The Lie Algebra of a Lie Group

2.The Universal Enceloping Algebra

3.Left Inuariant Affine Commectins

4.Taylor's Formula and the Differential of the Expomential Mapping J

2.Lie Subgroups and Subalgebras

3.Lie Tranfomation Groups

4.Coset Spaces and Homogeneous Spaces

5.The Adjoint Group

6.Semisimple Lie Groups Forms

7.Invariant Diferential Forms

8.Perspectives

Exercises and Further Results

Notes

CHAPTER IIIStructure of Semisimple Lie Algebras

1.Preliminaries

2.Theorems of Lie and Engel

3.Cartan Subalgebras

4.Root Space Decomposition

5.Significance of the Root Pattern

6.Real Forms

7.Cartan Decompositions

8.Examples.The Complex Classical Lie Algebras

Exercises and Further Results

Notes

CHAPTER IVSymmetric Spaces

1.Affine Locally Symmetric Spaces

2.Groups of Isometries

3.Riemannian Globally Symmetric Spaces

4.The Exponential Mapping and the Curvature

5.Locally and Globally Symmetric Spaces

6.Compact Lie Groups

7.Totally Geodesic Submanifolds.Lie Triple Systems

Exercises and Further Results

Notes

CHAPTER VDecomposition of Symmetric Spaces

1.Orthogonal Symmetric Lie Algebras

2.The Duality

3.Sectional Curvature of Symmetric Spaces

4.Symmetric Spaces with Semisimple Groups of Isometries

5.Notational Conventions

6.Rank of Symmetric Spaces

Exercises and Further Results

Notes

CHAPTER VISymmetric Spaces of the Noncompact Type

1.Decomposition of a Semisimple Lie Group

2.Maximal Compact Subgroups and Their Conjugacy

3.The Iwasawa Decomposition

4.Nilpotent Lie Groups

5.Global Decompositions

6.The Complex Case

Exercises and Further Results

Notes

CHAPTER VIISymmetric Spaces of the Compact Type

1.The Contrast between the Compact Type and the Noncompact Type

2.The Weyl Group and the Restricted Roots

3.Conjugate Points.Singular Points.The Diagram

4.Applications to Compact Groups

5.Control over the Singular Set

6.The Fundamental Group and the Center

7.The Aiffne Weyl Group

8.Application to the Symmetric Space U/K

9.Classification of Locally Isometric Spaces

10.Geometry of U/K.Symmetric Spaces of Rank One

11.Shortest Geodesics and Minimal Totally Geodesic Spheres

12.Appendix.Results from Dimension Theory

Exercises and Further Results

Notes

CHAPTER VIIIHermitian Symmetric Spaces

1.Almost Complex Manifolds

2.Complex Tensor Fields.The Ricci Curvature

3.Bounded Domains.The Kernel Function

4.Hermitian Symmetric Spaces of the Compact Type and the Noncompact Type

5.Irreducible Orthogonal Symmetric Lie Algebras

6.Irreducible Hermitian Symmetric Spaces

7.Bounded Symmetric Domains

Exercises and Further Results

Notes

CHAPTER IXStructure of Semisimple Lie Groups

1.Caftan, Iwasawa, and Bruhat Decompositions

2.The Rank-One Reduction

3.The SU(2, 1) Reduction

4.Cartan Subalgebras

5.Automorphisms

6.The Multiplicities

7.Jordan Decompositions

Exercises and Further Result

Notes

CHAPTER XThe Classification of Simple Lie Algebras and of Symmetric Spaces

1.Reduction of the Problem

2.The Classical Groups and Their Cartan Involutions

1.Some Matrix Groups and Their Lie Algebras

2.Connectivity Properties

3.The Involutive /lutomorphisms of the Classical Compact Lie Al&ebras

3.Root Systems

1.Generalities

2.Reduced Root Systems

3.Classification of Reduced Root Systems.Coxeter Graphs and Dynln'n

Diagrams

4.The Nonreduced Root Systems

5.The Highest Root

6.Outer Automorphirms and the Covering Index

4.The Classification of Simple Lie Algebras over C

5.Automorphisms of Finite Order of Semisimple Lie Algebras

6.The Classifications

1.The Simple Lie Algebras ever C and Their Compact Real Forms.The

Irreducible Riemannian Globally Symmetric Spaces of Type II and Type IV

2.The Real Forms of Simple Lie Algebras ~oer C.Irreducible Riemannian

Globally Symmetric Spaces of Type I and Type IF"

3.Irreducible Hermitian Symmetric Spaces

4.Coincidences between Different Classes.Special lsomorphisms

Exercises and Further Results

Notes

SOLUTIONS TO EXERCISES

SOME DETAILS

SUPPLEMENTARY NOTES

ERRATA

BIBLIOGRAPHY

LIST OF NOTATIONAL CONVENTIONS

SYMBOLS FREQUENTLY USED

INDEX

微分几何、李群和对称空间(影印版)是2018年由高等教育出版社出版,作者Sigurdur。

得书感谢您对《微分几何、李群和对称空间(影印版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
网络空间安全实战基础 电子书
从攻防角度出发的网络空间安全入门书籍。
硅谷工程师爸爸的超强数学思维课:建立孩子的几何思维 电子书
在解决生活中的实际问题中,训练孩子数学思维。
空间回归模型的理论应用与扩展 电子书
空间回归模型是空间经济学在计量经济学领域的全新拓展,其对空间结构的检验和空间关系的衡量弥补了传统计量经济领域空间同质性研究的不足,为研究现实经济现象的空间异质性提供了新的方法和视角。本书立足空间计量经济学理论前沿,创新性地引入wu-hausman统计量和空间回归模型对中国FDI的空间格局以及空间结构的稳定性进行了验证,通过实证分析探究多类型空间回归模型在应用领域的拓展。
搞定平面几何:辅助线是怎么想出来的 电子书
许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以17道几何题为例,从学生的角度去探索和求解;下篇则分7讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决