Python Data Science Handbook

Python Data Science Handbook:ToolsandTechniquesforDevelopers

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all-IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

作者简介

Jake VanderPlas,Python科学栈深度用户和开发者,尤其擅长Python科学计算和数据可视化,是altair等可视化程序库的创建人,并为Scikit-Learn、IPython等Python程序库做了大量贡献。现任美国华盛顿大学eScience学院物理科学研究院院长。

Python Data Science Handbook是2016年由O'ReillyMedia出版,作者JakeVanderPlas。

得书感谢您对《Python Data Science Handbook》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
IBM SPSS Modeler 18.0数据挖掘权威指南 电子书
联袂推荐 暨南大学教授、博士生导师刘建平,暨南大学研究生院副院长、经济学院统计学系副主任、教授、博士生导师陈光慧,天善智能创始人梁勇,IBM技术专家刘咏梅,IBM数据科学家钟云飞,广东省环保厅环境咨询专家委员会专家、广东柯内特环境科技有限公司总经理朱斌 本书特色 内容全面:涉及数据读取、数据处理、数据可视化、统计分析与检验、数据挖掘算法、自动建模、集成与扩展、模型部署、性能优化、数据挖掘方法论等诸多内容; 讲解透彻:既有理论的讲解,又涵盖应用的实践,而且在工具的介绍上,尽可能包括每一个选项的内容和应用形式,力求让读者“吃透”每一章节的内容; 突出实战:集行业经验、项目实践、算法剖析、应用技巧于一身,配套提供数据文件以及数据模型文件,方便读者动手实践。
Python数据分析基础教程 电子书
从数据处理的角度来讲解统计分析。
Python金融数据分析与挖掘实战 电子书
深入浅出地为你介绍如何使用Python进行金融数据分析、挖掘和量化投资的全过程。
数据结构:Python语言描述 电子书
基于Python语言的数据结构基础编程语法详解,国外高等院校信息科学与技术教材。
大数据时代的数据挖掘 电子书
(1)内容全面,覆盖当前数据挖掘的主要应用。在介绍每个应用案例时,详细阐述应用的背景,该领域中数据的来源和特点,数据采集与预处理方式,应用领域中数据挖掘的任务和实施数据挖掘技术的难点。同时提供相应的数据挖掘算法分析、工具设计以及系统实现。 (2)条理清晰、便于理解。一方面,面向热爱和关心数据挖掘技术的学术界和工业界读者,帮助他们更好地理解研究的目的和应用的基础;另一方面,让没有太多相关技术背景的读者可以通过阅读本书能够了解数据挖掘的意义和价值,可以看出数据挖掘是如何被广泛地应用于实际案例并成为解决各种问题的核心工具。