从线性回归到深度学习

从线性回归到深度学习

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

类似推荐

编辑推荐

适读人群 :本书可作为数据科学家和数据工程师的学习用书,也适合对数据科学有强烈兴趣的初学者使用,同时也可作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。

1.在数据学科的角度,融合了数学、计算机科学、计量经济学的精髓。

2.为读者阐释了数据科学所要解决的核心问题—数据模型、算法模型的理论内涵和适用范围

3.以常用的IT工具—Python为基础,教会读者如何建模以及通过算法实现数据模型,具有很强的实操性。

4.本书还为读者详解了分布式机器学习、神经网络、深度学习等大数据和人工智能的前沿技术。

中国工程院院士、第三世界科学院院士、前中国科学院计算技术研究所所长李国杰,

易选股金融智能证券董事长,键桥通讯董事易欢欢作序推荐;

GrowingIO 创始人兼 CEO张溪梦,

复旦大学教授、博士生导师、复旦大学航空航天数据研究中心主任杨卫东,

美国罗格斯大学管理科学及信息系统系终身教授,中国计算机学会大数据专家委员会委员林晓东,诚意推荐。

内容简介

本书全面讲解了数据科学的相关知识,从统计分析学到机器学习、深度学习中用到的算法及模型,借鉴经济学视角给出模型的相关解释,深入探讨模型的可用性,并结合大量的实际案例和代码帮助读者学以致用,将具体的应用场景和现有的模型相结合,从而更好地发现模型的潜在应用场景。

本书可作为数据科学家和数据工程师的学习用书,也适合对数据科学有强烈兴趣的初学者使用,同时也可作为高等院校计算机、数学及相关专业的师生用书和培训学校的教材。

作者简介

唐亘,数据科学家,专注于机器学习和大数据。曾获得复旦大学的数学和计算机双学士学位;巴黎综合理工的金融硕士学位;法国国立统计与经济管理学校的数据科学硕士学位。热爱并积极参与Apache Spark和Scikit-Learn等开源项目。作为讲师和技术顾问,为多家机构(包括惠普、华为、复旦大学等)提供百余场技术培训。此前的工作和研究集中于经济和量化金融,曾参与经济合作与发展组织(OECD)的研究项目并发表论文,并担任英国知名在线出版社Packt的技术审稿人。

章节目录

第 1章数据科学概述 1

1.1 挑战 2

1.1.1 工程实现的挑战 2

1.1.2 模型搭建的挑战 3

1.2 机器学习 5

1.2.1 机器学习与传统编程 5

1.2.2 监督式学习和非监督式学习 8

1.3 统计模型 8

1.4 关于本书 10

第 2章 Python安装指南与简介:告别空谈 12

2.1 Python简介 13

2.1.1 什么是Python 15

2.1.2 Python在数据科学中的地位 16

2.1.3 不可能绕过的第三方库 17

2.2 Python安装 17

2.2.1 Windows下的安装 18

2.2.2 Mac下的安装 21

2.2.3 Linux下的安装 24

2.3 Python上手实践 26

2.3.1 Python shell 26

2.3.2 第 一个Python程序:Word Count 28

2.3.3 Python编程基础 30

2.3.4 Python的工程结构 34

2.4 本章小结 35

第3章 数学基础:恼人但又不可或缺的知识 36

3.1 矩阵和向量空间 37

3.1.1 标量、向量与矩阵 37

3.1.2 特殊矩阵 39

3.1.3 矩阵运算 39

3.1.4 代码实现 42

3.1.5 向量空间 44

3.2 概率:量化随机 46

3.2.1 定义概率:事件和概率空间 47

3.2.2 条件概率:信息的价值 48

3.2.3 随机变量:两种不同的随机 50

3.2.4 正态分布:殊途同归 52

3.2.5 P-value:自信的猜测 53

3.3 微积分 55

3.3.1 导数和积分:位置、速度 55

3.3.2 极限:变化的终点 57

3.3.3 复合函数:链式法则 58

3.3.4 多元函数:偏导数 59

3.3.5 极值与最值:最优选择 59

3.4 本章小结 61

第4章 线性回归:模型之母 62

4.1 一个简单的例子 64

4.1.1 从机器学习的角度看这个问题 66

4.1.2 从统计学的角度看这个问题 69

4.2 上手实践:模型实现 73

4.2.1 机器学习代码实现 74

4.2.2 统计方法代码实现 77

4.3 模型陷阱 82

4.3.1 过度拟合:模型越复杂越好吗 84

4.3.2 模型幻觉之统计学方案:假设检验 87

4.3.3 模型幻觉之机器学习方案:惩罚项 89

4.3.4 比较两种方案 92

4.4 模型持久化 92

4.4.1 模型的生命周期 93

4.4.2 保存模型 93

4.5 本章小结 96

第5章 逻辑回归:隐藏因子 97

5.1 二元分类问题:是与否 98

5.1.1 线性回归:为何失效 98

5.1.2 窗口效应:看不见的才是关键 100

5.1.3 逻辑分布:胜者生存 102

5.1.4 参数估计之似然函数:统计学角度 104

5.1.5 参数估计之损失函数:机器学习角度 104

5.1.6 参数估计之最终预测:从概率到选择 106

5.1.7 空间变换:非线性到线性 106

5.2 上手实践:模型实现 108

5.2.1 初步分析数据:直观印象 108

5.2.2 搭建模型 113

5.2.3 理解模型结果 116

5.3 评估模型效果:孰优孰劣 118

5.3.1 查准率与查全率 119

5.3.2 ROC曲线与AUC 123

5.4 多元分类问题:超越是与否 127

5.4.1 多元逻辑回归:逻辑分布的威力 128

5.4.2 One-vs.-all:从二元到多元 129

5.4.3 模型实现 130

5.5 非均衡数据集 132

5.5.1 准确度悖论 132

5.5.2 一个例子 133

5.5.3 解决方法 135

5.6 本章小结 136

第6章 工程实现:计算机是怎么算的 138

6.1 算法思路:模拟滚动 139

6.2 数值求解:梯度下降法 141

6.3 上手实践:代码实现 142

6.3.1 TensorFlow基础 143

6.3.2 定义模型 148

6.3.3 梯度下降 149

6.3.4 分析运行细节 150

6.4 更优化的算法:随机梯度下降法 153

6.4.1 算法细节 153

6.4.2 代码实现 154

6.4.3 两种算法比较 156

6.5 本章小结 158

第7章 计量经济学的启示:他山之石 159

7.1 定量与定性:变量的数学运算合理吗 161

7.2 定性变量的处理 162

7.2.1 虚拟变量 162

7.2.2 上手实践:代码实现 164

7.2.3 从定性变量到定量变量 168

7.3 定量变量的处理 170

7.3.1 定量变量转换为定性变量 171

7.3.2 上手实践:代码实现 171

7.3.3 基于卡方检验的方法 173

7.4 显著性 175

7.5 多重共线性:多变量的烦恼 176

7.5.1 多重共线性效应 176

7.5.2 检测多重共线性 180

7.5.3 解决方法 185

7.5.4 虚拟变量陷阱 188

7.6 内生性:变化来自何处 191

7.6.1 来源 192

7.6.2 内生性效应 193

7.6.3 工具变量 195

7.6.4 逻辑回归的内生性 198

7.6.5 模型的联结 200

7.7 本章小结 201

第8章 监督式学习: 目标明确 202

8.1 支持向量学习机 203

8.1.1 直观例子 204

8.1.2 用数学理解直观 205

8.1.3 从几何直观到最优化问题 207

8.1.4 损失项 209

8.1.5 损失函数与惩罚项 210

8.1.6 Hard margin 与soft margin比较 211

8.1.7 支持向量学习机与逻辑回归:隐藏的假设 213

8.2 核函数 216

8.2.1 空间变换:从非线性到线性 216

8.2.2 拉格朗日对偶 218

8.2.3 支持向量 220

8.2.4 核函数的定义:优化运算 221

8.2.5 常用的核函数 222

8.2.6 Scale variant 225

8.3 决策树 227

8.3.1 决策规则 227

8.3.2 评判标准 229

8.3.3 代码实现 231

8.3.4 决策树预测算法以及模型的联结 231

8.3.5 剪枝 235

8.4 树的集成 238

8.4.1 随机森林 238

8.4.2 Random forest embedding 239

8.4.3 GBTs之梯度提升 241

8.4.4 GBTs之算法细节 242

8.5 本章小结 244

第9章 生成式模型:量化信息的价值 246

9.1 贝叶斯框架 248

9.1.1 蒙提霍尔问题 248

9.1.2 条件概率 249

9.1.3 先验概率与后验概率 251

9.1.4 参数估计与预测公式 251

9.1.5 贝叶斯学派与频率学派 252

9.2 朴素贝叶斯 254

9.2.1 特征提取:文字到数字 254

9.2.2 伯努利模型 256

9.2.3 多项式模型 258

9.2.4 TF-IDF 259

9.2.5 文本分类的代码实现 260

9.2.6 模型的联结 265

9.3 判别分析 266

9.3.1 线性判别分析 267

9.3.2 线性判别分析与逻辑回归比较 269

9.3.3 数据降维 270

9.3.4 代码实现 273

9.3.5 二次判别分析 275

9.4 隐马尔可夫模型 276

9.4.1 一个简单的例子 276

9.4.2 马尔可夫链 278

9.4.3 模型架构 279

9.4.4 中文分词:监督式学习 280

9.4.5 中文分词之代码实现 282

9.4.6 股票市场:非监督式学习 284

9.4.7 股票市场之代码实现 286

9.5 本章小结 289

第 10章 非监督式学习:聚类与降维 290

10.1 K-means 292

10.1.1 模型原理 292

10.1.2 收敛过程 293

10.1.3 如何选择聚类个数 295

10.1.4 应用示例 297

10.2 其他聚类模型 298

10.2.1 混合高斯之模型原理 299

10.2.2 混合高斯之模型实现 300

10.2.3 谱聚类之聚类结果 303

10.2.4 谱聚类之模型原理 304

10.2.5 谱聚类之图片分割 307

10.3 Pipeline 308

10.4 主成分分析 309

10.4.1 模型原理 310

10.4.2 模型实现 312

10.4.3 核函数 313

10.4.4 Kernel PCA的数学原理 315

10.4.5 应用示例 316

10.5 奇异值分解 317

10.5.1 定义 317

10.5.2 截断奇异值分解 317

10.5.3 潜在语义分析 318

10.5.4 大型推荐系统 320

10.6 本章小结 323

第 11章 分布式机器学习:集体力量 325

11.1 Spark简介 327

11.1.1 Spark安装 328

11.1.2 从MapReduce到Spark 333

11.1.3 运行Spark 335

11.1.4 Spark DataFrame 336

11.1.5 Spark的运行架构 339

11.2 最优化问题的分布式解法 341

11.2.1 分布式机器学习的原理 341

11.2.2 一个简单的例子 342

11.3 大数据模型的两个维度 344

11.3.1 数据量维度 344

11.3.2 模型数量维度 346

11.4 开源工具的另一面 348

11.4.1 一个简单的例子 349

11.4.2 开源工具的阿喀琉斯之踵 351

11.5 本章小结 351

第 12章 神经网络:模拟人的大脑 353

12.1 神经元 355

12.1.1 神经元模型 355

12.1.2 Sigmoid神经元与二元逻辑回归 356

12.1.3 Softmax函数与多元逻辑回归 358

12.2 神经网络 360

12.2.1 图形表示 360

12.2.2 数学基础 361

12.2.3 分类例子 363

12.2.4 代码实现 365

12.2.5 模型的联结 369

12.3 反向传播算法 370

12.3.1 随机梯度下降法回顾 370

12.3.2 数学推导 371

12.3.3 算法步骤 373

12.4 提高神经网络的学习效率 373

12.4.1 学习的原理 373

12.4.2 激活函数的改进 375

12.4.3 参数初始化 378

12.4.4 不稳定的梯度 380

12.5 本章小结 381

第 13章 深度学习:继续探索 383

13.1 利用神经网络识别数字 384

13.1.1 搭建模型 384

13.1.2 防止过拟合之惩罚项 386

13.1.3 防止过拟合之dropout 387

13.1.4 代码实现 389

13.2 卷积神经网络 394

13.2.1 模型结构之卷积层 395

13.2.2 模型结构之池化层 397

13.2.3 模型结构之完整结构 399

13.2.4 代码实现 400

13.2.5 结构真的那么重要吗 405

13.3 其他深度学习模型 406

13.3.1 递归神经网络 406

13.3.2 长短期记忆 407

13.3.3 非监督式学习 409

13.4 本章小结 411

从线性回归到深度学习是2018年由人民邮电出版社出版,作者唐亘。

得书感谢您对《从线性回归到深度学习》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
深度学习原理与实践 电子书
(1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。 (2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。 (3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。 (4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。 (5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。 将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。 --唐春明 广州大学数学与信息学科学院副院长 本书从原理、方法、实践这 3 个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。 --杨刚 西安电子科技大学教授 近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对 ANN、CNN、RNN 等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐! --吴健之 腾讯音乐高级工程师 作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看! --张瑞 中软国际高级产品经理
深度强化学习实战 电子书
详解深度强化学习,从入门到实战。
TensorFlow深度学习项目实战(深度学习系列) 电子书
本书用TensorFlow框架针对现实场景设计深度学习系统,实现有趣的深度学习项目。
动手学深度学习(PyTorch版) 电子书
·深度学习领域重磅作品《动手学深度学习》重磅推出PyTorch版本;·李沐、阿斯顿·张等大咖作者强强联合,精心编撰;·全球400多所大学采用的教科书,提供视频课程、教学PPT、习题,方便教师授课与学生自学;·能运行、可讨论的深度学习入门书,可在线运行源码并与作译者实时讨论。
深度学习与医学图像处理 电子书
一本介绍“如何使用深度学习方法解决医学图像处理问题”的入门图书。