人工智能和深度学习导论

人工智能和深度学习导论

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

内容简介

本书首先介绍了人工智能的基础知识,然后分别介绍了机器学习、深度学习、自然语言处理和强化学习中的重点概念和实践过程,包含逻辑斯谛回归、k最近邻、决策树、随机森林、支持向量机、卷积神经网络、循环神经网络、LSTM、自动编码器等。此外,本书的附录部分还分别简单介绍了Keras、TensorFlow、pandas等人工智能相关的工具。

本书适用于高等院校电子信息类专业的人工智能导论课程,也适合想要对人工智能、机器学习和深度学习快速了解和掌握的专业人士阅读参考。

人工智能和深度学习导论是2024年由人民邮电出版社出版,作者)。

得书感谢您对《人工智能和深度学习导论》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
人工智能导论 电子书
本书根据人工智能技术服务专业人才培养的需求,以智能机器人为载体,以揭开人工智能的神秘面纱为主线进行编写,设置了5个学习情境。学习情境1主要介绍人工智能的发展和应用,引起学习者的兴趣;学习情境2主要从智能机器如何进行知识存储的角度来理解人工智能;学习情境3主要从智能机器如何使用知识进行探索世界和求解问题的角度来进一步理解人工智能;学习情境4主要从智能机器如何进行自主学习知识、增长智慧的角度来理解人工
深度学习 电子书
本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
Python 深度学习 电子书
《Python深度学习》以深度学习框架为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架(以PyTorch为例)基础、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信
人工智能技术导论 电子书
本书以培养人工智能素养、计算思维能力和人工智能应用能力为目标,选用Python作为讲授计算思维和人工智能的载体,通过问题驱动、层层递进方式,培养学生的信息处理能力、问题解决能力和人工智能技术应用能力。本书内容主要包括人工智能绪论、人工智能之Python基础、人工智能之Python进阶、人工智能之商业智能、人工智能之BaiduAI库应用、人工智能之机器学习、创建GUI程序,以及人工智能之仿真模拟。 
人工智能导论(第2版) 电子书
本书遵循理念与方法、经典与前沿、技术与应用相融合渗透的原则,在理念、结构、内容和资源上都极具特色和创新。按照人工智能新知识体系,本书内容分为五大部分13章。将传统或经典人工智能理论、方法与技术以及新一代人工智能技术和方法相结合,形成基础概念(1-3章)+基础技术(4-5章)+重点研究内容与方向(机器智能)(6-12章)+行业应用与伦理基础(12、13章)的新知识体系模式。本书提供了配套学习资源,可