统计学习基础(第2版)

统计学习基础(第2版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

  This book is our attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, we emphasize the methods and their conceptual underpinnings rather than their theoretical properties. As a result, we hope that this book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

章节目录

Preface to the Second Edition

Preface to the First Edition

1 Introduction

2 Overview of Supervised Learning

2.1 Introduction

2.2 Variable Types and Terminology

2.3 Two Simple Approaches to Prediction

Least Squares and Nearest Neighbors

2.3.1 Linear Models and Least Squares

2.3.2 Nearest-Neighbor Methods

2.3.3 From Least Squares to Nearest Neighbors

2.4 Statistical Decision Theory

2.5 Local Methods in High Dimensions

2.6 Statistical Models, Supervised Learning and Function Approximation

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)

2.6.2 Supervised Learning

2.6.3 Function Approximation

2.7 Structured Regression Models

2.7.1 Difficulty of the Problem

2.8 Classes of Restricted Estimators

2.8.1 Roughness Penalty and Bayesian Methods

2.8.2 Kernel Methods and Local Regression

2.8.3 Basis Functions and Dictionary Methods

2.9 Model Selection and the Bias-Variance rlyadeoff

Bibliographic Notes

Exercises

3 Linear Methods for Regression

3.1 Introduction

3.2 Linear Regression Models and Least Squares

3.2.1 Example: Prostate Cancer

3.2.2 The Gauss-Markov Theorem

3.2.3 Multiple Regression from Simple Univariate Regression

3.2.4 Multiple Outputs

3.3 Subset Selection

3.3.1 Best-Subset Selection

3.3.2 Forward- and Backward-Stepwise Selection

3.3.3 Forward-Stagewise Regression

3.3.4 Prostate Cancer Data Example (Continued)

3.4 Shrinkage Methods

3.4.1 Ridge Regression

3.4.2 The Lasso

3.4.3 Discussion: Subset Selection, Ridge Regression and the Lasso

3.4.4 Least Angle Regression

3.5 Methods Using Derived Input Directions

3.5.1 Principal Components Regression

3.5.2 Partial Least Squares

3.6 Discussion: A Comparison of the Selection and Shrinkage Methods

3.7 Multiple Outcome Shrinkage and Selection

3.8 More on the Lasso and Related Path Algorithms

3.8.1 Incremental Forward Stagewise Regression

3.8.2 Piecewise-Linear Path Algorithms

3.8.3 The Dantzig Selector

3.8.4 The Grouped Lasso

3.8.5 Further Properties of the Lasso

3.8.6 Pathwise Coordinate Optimization

3.9 Computational Considerations

Bibliographic Notes

Exercises

……

4 Linear Methods for Classification

5 Basis Expansions and Regularization

6 Kernel Smoothing Methods

7 Model Assessment and Selection

8 Modellnference and Averaging

9 Additive Models, Trees, and Related Methods

10 Boosting and Additive Trees

11 Neural Networks

12 Support Vector Machines and Flexible Discriminants

13 Prototype Methods and Nearest-Neighbors

14 Unsupervised Learning

15 Random Forests

16 Ensemble Learning

17 Undirected Graphical Models

18 High-Dimensional Problems: p≥N

References

Author Index

Index

统计学习基础(第2版)是2015年由世界图书出版公司出版,作者[德]黑斯蒂。

得书感谢您对《统计学习基础(第2版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
统计基础与实务 电子书
本书共分为九个学习情境,分别为:统计基础知识、统计设计和统计调查、统计整理、总量指标和相对指标、平均指标和变异指标、动态数列分析、统计指数、抽样调查、相关与回归分,内容前线易懂,层次分明,可作为高职高专和实务工作者的参考用书。
统计学基础(微课版 第4版) 电子书
本书系统地讲述统计学中有关数据收集、数据整理和数据分析的基本方法。全书共8个任务,分别是认识统计、数据收集、数据整理与显示、数据特征的描述、抽样估计、统计指数、相关与回归分析、时间序列分析与预测。为了提高学生的学习兴趣,每个任务开篇都有一个与现实社会经济生活非常贴近的案例;为了提高学生的实践能力,在每个任务中创新性地增加了Excel的操作演示;为了让学生能够及时地检查自己的学习效果,在每个任务中安
统计学基础(附微课视频 第3版) 电子书
本书系统介绍了统计学的基本理论、基本方法及其应用,主要内容包括:统计学的基本知识、统计资料的搜集与整理、统计资料分析所需要的基本指标和统计资料分析方法。
统计学基础(附微课视频 第2版) 电子书
本书根据统计工作过程,通过9个任务系统阐述了统计学的基本理论、方法和作用。内容包括:认知统计、统计调查、统计整理、总量指标与相对指标分析、平均指标与标志变异指标分析、时间数列分析、统计指数分析、抽样推断、相关与回归分析。每个任务由知识目标、能力目标、知识结构图、任务导入、任务描述、任务小结、案例阅读、习题与实训等8个部分组成。
统计学基础及应用(微课版 第4版) 电子书
本书共9个任务,包括认知统计学和统计数据、统计数据收集、统计整理、总量分析和相对分析、总体分布分析、动态分析、指数分析、抽样推断、相关分析与回归分析。