内容简介
Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way.
Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax.
You’ll explore:
How streaming and batch data processing patterns compare
The core principles and concepts behind robust out-of-order data processing
How watermarks track progress and completeness in infinite datasets
How exactly-once data processing techniques ensure correctness
How the concepts of streams and tables form the foundations of both batch and streaming data processing
The practical motivations behind a powerful persistent state mechanism, driven by a real-world example
How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
作者简介
Tyler Akidau is a senior staff software engineer at Google, where he is the technical lead for the Data Processing Languages & Systems group, responsible for Google's Apache Beam efforts, Google Cloud Dataflow, and internal data processing tools like Google Flume, MapReduce, and MillWheel. His also a founding member of the Apache Beam PMC. Though deeply passionate and vocal abo...
(展开全部)
Streaming Systems是2017年由O'ReillyMedia出版,作者TylerAkidau。
得书感谢您对《Streaming Systems》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。