深度学习经典教程:深度学习+动手学深度学习(套装共2册)(异步图书出品)

深度学习经典教程:深度学习+动手学深度学习(套装共2册)(异步图书出品)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

类似推荐

编辑推荐

适读人群 :本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程或附录中描述的线性代数、微分和概率基础。深度学习读者对象:本书对各类读者都有一定的用处,但主要是为两类受众而写的。其中,一类受众是学习机器学习的大学生(本科或研究生),包括那些已经开始职业生涯的深度学习和人工智能研究者。另一类受众是没有机器学习或统计背景,但希望能快速地掌握这方面知识,并在他们的产品或平台中使用深度学习的软件工程师。

“花书”深度学习与“沐神”大作双剑合璧,一套书搞定深度学习的基础知识,不仅有理论,更有企业级实战。入门深度学习,选这一套书就够了。

“花书”《深度学习》编辑推荐

AI圣经!深度学习领域奠基性的经典畅销书!长期位居美国亚马逊AI和机器学习类图书榜首!所有数据科学家和机器学习从业者的必读图书!特斯拉CEO埃隆·马斯克

深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。因为计算机能够从经验中获取知识,所以不需要人类来形式化地定义计算机需要的所有知识。层次概念允许计算机通过构造简单的概念来学习复杂的概念,而这些分层的图结构将具有很深的层次。本书会介绍深度学习领域的许多主题。

本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。zui后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。

《深度学习》这本书既可以被本科生或研究生用于规划其学术界或工业界生涯,也适用于希望在各种产品或平台上开始使用深度学习技术的软件工程师。作者在本书的配套网站上为读者和教师提供了补充资料。中文版读者可以访问人民邮电出版社异步社区www.epubit.com.cn获取相关信息。

《动手学深度学习》编辑推荐

目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。

本书面向希望了解深度学习,特别是对实际使用深度学习感兴趣的大学生、工程师和研究人员。本书不要求读者有任何深度学习或者机器学习的背景知识,读者只需具备基本的数学和编程知识,如基础的线性代数、微分、概率及Python编程知识。本书的附录中提供了书中涉及的主要数学知识,供读者参考。

本书的英文版Dive into Deep Learning是加州大学伯克利分校2019年春学期“Introduction to Deep Learning”(深度学习导论)课程的教材。截至2019年春学期,本书中的内容已被全球15 所知名大学用于教学。本书的学习社区、免费教学资源(课件、教学视频、更多习题等),以及用于本书学习和教学的免费计算资源(仅限学生和老师)的申请方法在本书配套网站zh.d2l.ai上发布。读者在阅读本书的过程中,如果对书中某节内容有疑惑,也可以扫一扫书中对应的二维码寻求帮助。

内容简介

动手学深度学习内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。

全书的内容分为3个部分:第一部分介绍深度学习的背景,提供预备知识,并包括深度学习基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。

本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程或附录中描述的线性代数、微分和概率基础。深度学习内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。

《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。

作者简介

动手学深度学习作者介绍:

阿斯顿·张(Aston Zhang)

美亚应用科学家,美国伊利诺伊大学香槟分校计算机科学博士,统计学和计算机科学双硕士。他专注于机器学习的研究,并在数个学术会议发表过论文。他担任过NeurIPS、ICML、KDD、WWW、WSDM、SIGIR、AAAI 等学术会议的程序委员或审稿人以及Frontiers in Big Data 期刊的编委。

李沐(Mu Li)

美亚首席科学家(Principal Scientist),加州大学伯克利分校客座助理教授,美国卡内基梅隆大学计算机系博士。他专注于分布式系统和机器学习算法的研究。他是深度学习框架MXNet 的作者之一。他曾任机器学习创业公司Marianas Labs 的CTO 和百度深度学习研究院的主任研发架构师。他在理论、机器学习、应用和操作系统等多个领域的学术会议(包括FOCS、ICML、NeurIPS、AISTATS、CVPR、KDD 、WSDM、OSDI)上发表过论文。

扎卡里·C. 立顿(Zachary C. Lipton)

美亚应用科学家,美国卡内基梅隆大学助理教授,美国加州大学圣迭戈分校博士。他专注于机器学习算法及其社会影响的研究,特别是在时序数据与序列决策上的深度学习。这类工作有着广泛的应用场景,包括医疗诊断、对话系统和产品推荐。他创立了博客“Approximately Correct”(approximatelycorrect.com)。

亚历山大·J. 斯莫拉(Alexander J. Smola)

美亚副总裁/ 杰出科学家,德国柏林工业大学计算机科学博士。他曾在澳大利亚国立大学、美国加州大学伯克利分校和卡内基梅隆大学任教。他发表了超过200篇学术论文,并著有5本书,其论文及书被引用超过10万次。他的研究兴趣包括深度学习、贝叶斯非参数、核方法、统计建模和可扩展算法。

深度学习作者简介:

Ian Goodfellow,谷歌公司(Google) 的研究科学家,2014 年蒙特利尔大学机器学习博士。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。Ian Goodfellow在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓越。

Yoshua Bengio,蒙特利尔大学计算机科学与运筹学系(DIRO) 的教授,蒙特利尔学习算法研究所(MILA) 的负责人,CIFAR 项目的共同负责人,加拿大统计学习算法研究主席。Yoshua Bengio 的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。

Aaron Courville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA 实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。Aaron Courville 主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI相关任务方面也有所研究。

中文版审校者简介

张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。

译者简介

赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。

黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。

符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。

李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。

章节目录

动手学深度学习目录:

对本书的赞誉

前言

如何使用本书

资源与支持

主要符号表

第 1 章 深度学习简介 1

1.1 起源 2

1.2 发展 4

1.3 成功案例 6

1.4 特点 7

小结 8

练习 8

第 2 章 预备知识 9

2.1 获取和运行本书的代码 9

2.1.1 获取代码并安装运行环境 9

2.1.2 更新代码和运行环境 11

2.1.3 使用GPU版的MXNet 11

小结12

练习12

2.2 数据操作 12

2.2.1 创建NDArray 12

2.2.2 运算 14

2.2.3 广播机制 16

2.2.4 索引 17

2.2.5 运算的内存开销 17

2.2.6 NDArray和NumPy相互变换18

小结19

练习19

2.3 自动求梯度 19

2.3.1 简单例子 19AL34

2.3.2 训练模式和预测模式 20

2.3.3 对Python控制流求梯度 20

小结21

练习21

2.4 查阅文档 21

2.4.1 查找模块里的所有函数和类 21

2.4.2 查找特定函数和类的使用 22

2.4.3 在MXNet网站上查阅 23

小结 24

练习 24

第3 章 深度学习基础 25

3.1 线性回归 25

3.1.1 线性回归的基本要素 25

3.1.2 线性回归的表示方法 28

小结 30

练习 30

3.2 线性回归的从零开始实现 30

3.2.1 生成数据集 30

3.2.2 读取数据集 32

3.2.3 初始化模型参数 32

3.2.4 定义模型 33

3.2.5 定义损失函数 33

3.2.6 定义优化算法 33

3.2.7 训练模型 33

小结 34

练习 34

3.3 线性回归的简洁实现 35

3.3.1 生成数据集 35

3.3.2 读取数据集 35

3.3.3 定义模型 36

3.3.4 初始化模型参数 36

3.3.5 定义损失函数 37

3.3.6 定义优化算法 37

3.3.7 训练模型 37

小结 38

练习 38

3.4 softmax回归 38

3.4.1 分类问题 38

3.4.2 softmax回归模型 39

3.4.3 单样本分类的矢量计算表达式 40

3.4.4 小批量样本分类的矢量计算表达式 40

3.4.5 交叉熵损失函数 41

3.4.6 模型预测及评价 42

小结 42

练习 42

3.5 图像分类数据集(Fashion-MNIST) 42

3.5.1 获取数据集 42

3.5.2 读取小批量 44

小结 45

练习 45

3.6 softmax回归的从零开始实现 45

3.6.1 读取数据集 45

3.6.2 初始化模型参数 45

3.6.3 实现softmax运算 46

3.6.4 定义模型 46

3.6.5 定义损失函数 47

3.6.6 计算分类准确率 47

3.6.7 训练模型 48

3.6.8 预测 48

小结 49

练习 49

3.7 softmax回归的简洁实现 49

3.7.1 读取数据集 49

3.7.2 定义和初始化模型 50

3.7.3 softmax和交叉熵损失函数 50

3.7.4 定义优化算法 50

3.7.5 训练模型 50

小结 50

练习 50

3.8 多层感知机 51

3.8.1 隐藏层 51

3.8.2 激活函数 52

3.8.3 多层感知机 55

小结 55

练习 55

3.9 多层感知机的从零开始实现 56

3.9.1 读取数据集 56

3.9.2 定义模型参数 56

3.9.3 定义激活函数 56

3.9.4 定义模型 56

3.9.5 定义损失函数 57

3.9.6 训练模型 57

小结 57

练习 57

3.10 多层感知机的简洁实现 57

3.10.1 定义模型 58

3.10.2 训练模型 58

小结 58

练习 58

3.11 模型选择、欠拟合和过拟合 58

3.11.1 训练误差和泛化误差 59

3.11.2 模型选择 59

3.11.3 欠拟合和过拟合 60

3.11.4 多项式函数拟合实验 61

小结 65

练习 65

3.12 权重衰减 65

3.12.1 方法 65

3.12.2 高维线性回归实验 66

3.12.3 从零开始实现 66

3.12.4 简洁实现 68

小结 70

练习 70

3.13 丢弃法 70

3.13.1 方法 70

3.13.2 从零开始实现 71

3.13.3 简洁实现 73

小结 74

练习 74

3.14 正向传播、反向传播和计算图 74

3.14.1 正向传播 74

3.14.2 正向传播的计算图 75

3.14.3 反向传播 75

3.14.4 训练深度学习模型 76

小结 77

练习 77

3.15 数值稳定性和模型初始化 77

3.15.1 衰减和爆炸 77

3.15.2 随机初始化模型参数 78

小结 78

练习 79

3.16 实战Kaggle比赛:房价预测 79

3.16.1 Kaggle比赛 79

3.16.2 读取数据集 80

3.16.3 预处理数据集 81

3.16.4 训练模型 82

3.16.5 k 折交叉验证 82

3.16.6 模型选择 83

3.16.7 预测并在Kaggle提交结果 84

小结 85

练习 85

第4章 深度学习计算 86

4.1 模型构造 86

小结 89

练习 90

4.2 模型参数的访问、初始化和共享 90

小结 94

练习 94

4.3 模型参数的延后初始化 95

小结 96

练习 97

4.4 自定义层 97

小结 99

练习 99

4.5 读取和存储 99

小结 101

练习 101

4.6 GPU计算 101

小结 105

练习 105

第5章 卷积神经网络 106

5.1 二维卷积层 106

小结 110

练习 110

5.2 填充和步幅 111

小结 113

练习 113

5.3 多输入通道和多输出通道 114

小结 117

练习 117

5.4 池化层 117

小结 120

练习 121

5.5 卷积神经网络(LeNet) 121

小结 124

练习 124

5.6 深度卷积神经网络(AlexNet) 124

小结 128

练习 129

5.7 使用重复元素的网络(VGG) 129

5.7.1 VGG块 129

5.7.2 VGG网络 129

5.7.3 训练模型 130

小结 131

练习 131

5.8 网络中的网络(NiN) 131

小结 134

练习 134

5.9 含并行连结的网络(GoogLeNet) 134

小结 137

练习 137

5.10 批量归一化 138

小结 142

练习 142

5.11 残差网络(ResNet) 143

小结 146

练习 146

5.12 稠密连接网络(DenseNet) 147

小结 149

练习 149

第6章 循环神经网络 150

6.1 语言模型 150

小结 152

练习 152

6.2 循环神经网络 152

小结 155

练习 155

6.3 语言模型数据集(歌词) 155

小结 158

练习 159

6.4 循环神经网络的从零开始实现 159

小结 164

练习 164

6.5 循环神经网络的简洁实现 165

小结 168

练习 168

小结 170

练习 170

6.7 门控循环单元(GRU) 170

小结 176

练习 176

6.8 长短期记忆(LSTM) 176

小结 181

练习 182

6.9 深度循环神经网络 182

小结 183

练习 183

6.10 双向循环神经网络 183

小结 184

练习 184

第7章 优化算法 185

7.1 优化与深度学习 185

小结 188

练习 189

7.2 梯度下降和随机梯度下降 189

小结 194

练习 194

7.3 小批量随机梯度下降 194

小结 199

练习 199

7.4 动量法 200

小结 205

练习 205

7.5 AdaGrad算法206

小结 209

练习 209

7.6 RMSProp算法 209

小结 212

练习 212

7.7 AdaDelta算法 212

小结 214

练习 214

7.8 Adam算法 215

小结 217

练习 217

第8章 计算性能 218

8.1 命令式和符号式混合编程 218

小结 224

练习 224

8.2 异步计算 224

小结 229

练习 229

8.3 自动并行计算 229

小结 231

练习 231

8.4 多GPU计算 232

小结 237

练习 237

8.5 多GPU计算的简洁实现 237

小结 241

练习 241

第9章 计算机视觉 242

9.1 图像增广242

小结 250

练习 250

9.2 微调 250

热狗识别 251

小结 255

练习 255

9.3 目标检测和边界框 255

边界框 256

小结 257

练习 257

9.4 锚框 257

小结 265

练习 265

9.5 多尺度目标检测 265

小结 268

练习 268

9.6 目标检测数据集(皮卡丘) 268

小结 270

练习 271

9.7 单发多框检测(SSD) 271

小结 278

练习 278

9.8 区域卷积神经网络(R-CNN)系列280

小结 285

练习 285

9.9 语义分割和数据集 285

小结 290

练习 290

9.10 全卷积网络(FCN) 290

小结 297

练习 297

9.11 样式迁移 298

小结 306

练习 306

9.12 实战Kaggle比赛:图像 分类(CIFAR-10)306

小结 313

练习 313

9.13 实战Kaggle比赛:狗的品种识别(ImageNet Dogs) 314

小结 320

练习 320

第10 章 自然语言处理 321

10.1 词嵌入(word2vec) 321

小结 325

练习 325

10.2 近似训练325

小结 327

练习 328

10.3 word2vec的实现328

小结 336

练习 336

10.4 子词嵌入(fastText) 336

小结 337

练习 337

10.5 全局向量的词嵌入(GloVe)337

小结 340

练习 340

10.6 求近义词和类比词340

小结 343

练习 343

10.7 文本情感分类:使用循环神经网络 343

小结 347

练习 347

10.8 文本情感分类:使用卷积神经网络(textCNN) 347

小结 353

练习 353

10.9 编码器-解码器(seq2seq)353

小结 355

练习 355

10.10 束搜索 355

小结 358

练习 358

10.11 注意力机制 358

小结 361

练习 361

10.12 机器翻译 361

小结 369

练习 369

附录A 数学基础 370

附录B 使用 Jupyter 记事本 376

附录C 使用 AWS 运行代码 381

附录D GPU 购买指南 388

附录E 如何为本书做贡献 391

附录F d2lzh 包索引 395

附录G 中英文术语对照表 397

参考文献 402

索引 407

深度学习经典教程:深度学习+动手学深度学习(套装共2册)(异步图书出品)是2019年由人民邮电出版社出版,作者[美]Ian。

得书感谢您对《深度学习经典教程:深度学习+动手学深度学习(套装共2册)(异步图书出品)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
深度学习与围棋 电子书
深入浅出的深度学习入门书,从零实现AlphaGo,为AI理论和应用打下基础。
深度学习原理与实践 电子书
(1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。 (2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。 (3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。 (4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。 (5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。 将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。 --唐春明 广州大学数学与信息学科学院副院长 本书从原理、方法、实践这 3 个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。 --杨刚 西安电子科技大学教授 近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对 ANN、CNN、RNN 等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐! --吴健之 腾讯音乐高级工程师 作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看! --张瑞 中软国际高级产品经理
深度强化学习实战 电子书
详解深度强化学习,从入门到实战。
深度学习程序设计实战 电子书
本书以Python语言和Tensorflow为工具,由浅入深地讲述了深度学习程序设计的基本原理、算法和思考问题的方法,内容包括自顶向下的程序设计、递归程序设计、面向对象的程序设计、反向传播算法、三层神经网络、卷积神经网络、循环神经网络、生成式对抗网络和目标检测等。
PaddlePaddleFluid深度学习入门与实战 电子书
本书全面讲解PaddlePaddle Fluid框架在深度学习领域的应用。