流形与几何初步

流形与几何初步

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

  《流形与几何初步》是微分流形和现代几何的一本入门教材。它从微分流形的定义出发,介绍了现代几何学研究中的各种基本概念和技巧。《流形与几何初步》前两章为基础内容,主要介绍流形上的微积分并证明Stokes积分公式;后三章分别从几何、拓扑和整体分析三个方面阐述现代几何中的一些重要成果,如Gauss-Bonnet-Chern公式、Hodge定理以及Atiyah-Singer指标公式等。《流形与几何初步》内容丰富、语言简洁,书中含有详细的例子和练习。凡具有微积分、线性代数、点集拓扑以及泛函分析基础的读者均可阅读《流形与几何初步》。

  《流形与几何初步》可作为综合性大学、师范院校数学系高年级本科生和研究生选修课教材,也可供数学、物理工作者参考。

章节目录

前言

第1章 微分流形

1.1 流形的定义和例子

1.2 子流形

1.3 单位分解

1.4 切空间和切映射

1.5 Sard定理及应用

1.6 Lie群初步

第2章 流形上的微积分

2.1 切丛和切向量场

2.2 可积性定理及应用

2.3 向量丛和纤维丛

2.4 张量丛

2.5 微分形式

2.6 带边流形

2.7 Stokes积分公式

第3章 流形的几何

3.1 度量回顾

3.2 联络

3.3 曲率

3.4 联络和曲率的计算

3.4.1 活动标架法

3.4.2 正规坐标

3.5 子流形几何

3.5.1 第二基本形式

3.5.2 活动标架法

3.5.3 极小子流形

3.5.4 黎曼淹没

3.6 齐性空间

3.6.1 Lie群和不变度量

3.6.2 齐性空间

3.6.3 对称空间

3.7 主丛及其联络

3.8 Gauss-Bonnet-Chern公式

3.8.1 向量场的指标

3.8.2 单位球丛上的计算

3.9 Chern-Weil理论

第4章 流形的上同调

4.1 Poincaré引理

4.1.1 Poincaré引理

4.1.2 映射度回顾

4.2 de Rham上同调群的计算

4.2.1 群作用与上同调

4.2.2 Mayer-Vietoris正合序列

4.3 Thom类和相交数

4.3.1 Thom类

4.3.2 相交数

4.4 Hodge理论

4.4.1 Hodge星算子

4.4.2 Bochner技巧

4.5 Dirac算子

4.5.1 Clifford代数

4.5.2 Clifford丛

第5章 流形上的椭圆算子

5.1 Sobolev空间

5.2 Hodge定理的证明

5.3 热方程与热核

5.4 迹与指标公式

5.5 指标公式的证明

5.5.1 谐振子

5.5.2 Atiyah-Singer指标定理

参考文献

索引

流形与几何初步是2013年由科学出版社出版,作者梅加强。

得书感谢您对《流形与几何初步》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
动物与植物 电子书
本书分为动物、植物。主要内容包括:为什么鸟类能飞行;为什么企鹅不怕冷;为什么集鸽不会迷路等。
天文与地理 电子书
本书分为天文、地理。内容包括:为什么感觉不到地球的转动;为什么金星又叫“启明星”和“长庚星”等。
昆虫与气候 电子书
本书分为昆虫、气候。主要内容包括:为什么蜜蜂蜇人后会死去;为什么飞蛾要扑火;为什么蜻蜓会点水等。
科技与生活 电子书
本书分为科技、生活。主要内容包括:石油是取之不尽的能源吗;海洋能源是什么;太阳能有什么特点等。
HBase入门与实践 电子书
大数据时代快速上手HBase行动指南。