人工智能数学基础

人工智能数学基础

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

(1)零基础也能快速入门。本书从最基础的高等数学基础讲起,由浅入深,层层递进,在巩固固有知识的同时深入讲解人工智能的算法原理,无论读者是否从事计算机相关行业,是否接触过人工智能,都能通过本书实现快速入门。

(2)全新视角介绍数学知识。采用计算机程序模拟数学推论的介绍方法,使数学知识更为清晰易懂,更容易让初学者深入理解数学定理、公式的意义,从而激发起读者的学习兴趣。

(3)理论和实践相结合。每章最后提供根据所在章的理论知识点精心设计的“综合性实例”,读者可以通过综合案例进行实践操作,为以后的算法学习奠定基础。

(4)大量范例源码 习题答案,为学习排忧解难。本书所有示例都有清晰完整的源码,每章之后设有习题并配套题目答案,讲解清晰,解决读者在学习中的所有困惑。

内容简介

  本书以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。

  全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。

  本书适合准备从事数据科学与人工智能相关行业的读者。

作者简介

  唐宇迪,计算机专业博士,网易云课堂人工智能认证行家,51CTO学院讲师,CSDN博客专家。

  李琳,河南工业大学副教授,在软件工程、机器学习、人工智能和模式识别等领域有深入研究。

  侯惠芳,教授,解放军信息工程大学通信与信息系统专业博士,擅长机器学习、大数据检索、人工智能和模式识别等。

  王社伟,河南工业大学副教授,西北工业大学航空宇航制造专业博士,挪威科技大学访问学者,对数字化制造、企业管理系统、机器学习、数据挖掘等有丰富的实战经验。

章节目录

第1 章 人工智能与数学基础..........1

1.1 什么是人工智能............................ 2

1.2 人工智能的发展 ............................ 2

1.3 人工智能的应用 ............................ 4

1.4 学习人工智能需要哪些知识 ............. 5

1.5 为什么要学习数学 ......................... 7

1.6 本书包括的数学知识 ...................... 8

第 1 篇

基础篇................................................................. 9

第 2 章 高等数学基础 ................. 10

2.1 函数.......................................... 11

2.2 极限..........................................13

2.3 无穷小与无穷大...........................17

2.4 连续性与导数..............................19

2.5 偏导数...................................... 24

2.6 方向导数................................... 27

2.7 梯度......................................... 29

2.8 综合实例—梯度下降法求函数的最小值.......................................31

2.9 高手点拨................................... 35

2.10 习题....................................... 38

第 3 章 微积分..............................39

3.1 微积分的基本思想 ....................... 40

3.2 微积分的解释..............................41

3.3 定积分...................................... 42

3.4 定积分的性质............................. 44

3.5 牛顿—莱布尼茨公式.................... 45

3.6 综合实例—Python 中常用的定积分求解方法................................... 49

3.7 高手点拨....................................51

3.8 习题 ........................................ 52

第 4 章 泰勒公式与拉格朗日乘子法..............................53

4.1 泰勒公式出发点.......................... 54

4.2 一点一世界................................ 54

4.3 阶数和阶乘的作用....................... 59

4.4 麦克劳林展开式的应用..................61

4.5 拉格朗日乘子法.......................... 63

4.6 求解拉格朗日乘子法.................... 64

4.7 综合实例—编程模拟实现 sinx 的n 阶泰勒多项式并验证结果.................. 67

4.8 高手点拨 ................................... 68

4.9 习题 ......................................... 68

第2 篇

核心篇............................................................... 69

第 5 章 将研究对象形式化—线性代数基础 ..........................70

5.1 向量..........................................71

5.2 矩阵......................................... 73

5.3 矩阵和向量的创建....................... 77

5.4 特殊的矩阵................................ 85

5.5 矩阵基本操作..............................91

5.6 转置矩阵和逆矩阵....................... 96

5.7 行列式..................................... 101

5.8 矩阵的秩..................................104

5.9 内积与正交...............................108

5.10 综合实例—线性代数在实际问题中的应用 ....................................... 114

5.11 高手点拨 ................................ 121

5.12 习题......................................126

第 6 章 从数据中提取重要信息—特征值与矩阵分解..........127

6.1 特征值与特征向量 .....................128

6.2 特征空间..................................133

6.3 特征值分解...............................133

6.4 SVD 解决的问题.......................135

6.5 奇异值分解(SVD)..................136

6.6 综合实例 1—利用 SVD 对图像进行压缩 .......................................140

6.7 综合实例 2—利用 SVD 推荐商品 .......................................143

6.8 高手点拨..................................150

6.9 习题 .......................................154

第 7 章 描述统计规律 1—概率论基础................................155

7.1 随机事件及其概率 ......................156

7.2 条件概率.................................. 161

7.3 独立性.....................................162

7.4 随机变量..................................165

7.5 二维随机变量............................173

7.6 边缘分布..................................177

7.7 综合实例—概率的应用.............180

7.8 高手点拨.................................. 181

7.9 习题........................................184

第 8 章 描述统计规律 2—随机变量与概率估计........................185

8.1 随机变量的数字特征 ..................186

8.2 大数定律和中心极限定理.............193

8.3 数理统计基本概念......................199

8.4 最大似然估计........................... 203

8.5 最大后验估计........................... 206

8.6 综合实例 1—贝叶斯用户满意度预测 ...................................... 209

8.7 综合实例 2—最大似然法求解模型参数 .......................................217

8.8 高手点拨 ................................ 222

8.9 习题 ....................................... 224

第 3 篇

提高篇............................................................. 225

第 9 章 随机变量的几种分布...... 226

9.1 正态分布 ................................ 227

9.2 二项分布................................. 240

9.3 泊松分布................................. 250

9.4 均匀分布..................................261

9.5 卡方分布................................. 266

9.6 Beta 分布 .............................. 273

9.7 综合实例—估算棒球运动员的击中率 ...................................... 283

9.8 高手点拨 ................................ 285

9.9 习题 ...................................... 286

第 10 章 数据的空间变换—核函数变换............................. 287

10.1 相关知识简介 ......................... 288

10.2 核函数的引入 ......................... 290

10.3 核函数实例............................ 290

10.4 常用核函数.............................291

10.5 核函数的选择......................... 294

10.6 SVM 原理 ............................ 295

10.7 非线性 SVM 与核函数的引入.... 305

10.8 综合实例—利用 SVM 构建分类

问题......................................310

10.9 高手点拨................................315

10.10 习题 ................................... 322

第 11 章 熵与激活函数 .............. 323

11.1 熵和信息熵............................ 324

11.2 激活函数 ............................... 328

11.3 综合案例—分类算法中信息熵的应用...................................... 339

11.4 高手点拨 ................................341

11.5 习题 ..................................... 342

第4 篇

应用篇............................................................. 333

第 12 章 假设检验 ..................... 344

12.1 假设检验的基本概念................. 345

12.2 Z 检验 ...................................351

12.3 t 检验 ................................... 353

12.4 卡方检验............................... 358

12.5 假设检验中的两类错误 ..............361

12.6 综合实例 1—体检数据中的假设检验问题..................................... 363

12.7 综合实例 2—种族对求职是否有影响..................................... 369

12.8 高手点拨............................... 372

12.9 习题..................................... 374

13 章 相关分析...................... 375

13.1 相关分析概述.......................... 376

13.2 皮尔森相关系数....................... 378

13.3 相关系数的计算与假设检验........ 379

13.4 斯皮尔曼等级相关.................... 385

13.5 肯德尔系数............................. 392

13.6 质量相关分析.......................... 396

13.7 品质相关分析.......................... 400

13.8 偏相关与复相关....................... 403

13.9 综合实例—相关系数计算........ 405

13.10 高手点拨.............................. 407

13.11 习题..................................... 408

第 14 章 回归分析......................409

14.1 回归分析概述...........................410

14.2 回归方程推导及应用..................412

14.3 回归直线拟合优度.....................416

14.4 线性回归的模型检验..................417

14.5 利用回归直线进行估计和预测......419

14.6 多元与曲线回归问题..................421

14.7 Python 工具包....................... 426

14.8 综合实例—个人医疗保费预测任务...................................... 432

14.9 高手点拨................................ 444

14.10 习题..................................... 446

第 15 章 方差分析......................449

15.1 方差分析概述.......................... 448

15.2 方差的比较............................. 450

15.3 方差分析.................................451

15.4 综合实例—连锁餐饮用户评级分析...................................... 460

15.5 高手点拨................................ 464

15.6 习题...................................... 466

第 16 章 聚类分析......................469

16.1 聚类分析概述.......................... 468

16.2 层次聚类................................ 470

16.3 K-Means 聚类...................... 484

16.4 DBSCAN 聚类....................... 494

16.5 综合实例—聚类分析.............. 499

16.6 高手点拨.................................512

16.7 习题.......................................512

第 17 章 贝叶斯分析....................513

17.1 贝叶斯分析概述........................514

17.2 MCMC 概述.......................... 520

17.3 MCMC 采样 ......................... 525

17.4 Gibbs 采样........................... 529

17.5 综合实例—利用 PyMC3 实现随机模拟样本分布......................... 532

17.6 高手点拨............................... 539

17.7 习题..................................... 540

人工智能数学基础是2020年由北京大学出版社出版,作者李琳。

得书感谢您对《人工智能数学基础》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
MySQL数据库基础与实践 电子书
本书从实用的角度出发,全面讲解MySQL数据库技术。
Spark编程基础(Scala版) 电子书
本书是厦门大学作者团队长期经验总结的结晶,是在厦门大学《大数据技术原理与应用》入门级大数据教材的基础之上编写的。为了确保教程质量,在编著出版纸质教材之前,实验室已经于2016年10月通过实验室官网免费发布共享了简化版的Spark在线教程和相关教学资源,同时,该在线教程也已经用于厦门大学计算机科学系研究生的大数据课程教学,并成为全国高校大数据课程教师培训交流班的授课内容。实验室根据读者对在线Spark教程的大量反馈意见以及教学实践中发现的问题,对Spark在线教程进行了多次修正和完善,所有这些前期准备工作,都为纸质教材的编著出版打下了坚实的基础。 披荆斩棘,在大数据丛林中开辟学习捷径 填沟削坎,为快速学习Spark 技术铺平道路 深入浅出,有效降低Spark 技术学习门槛 资源全面,构建全方位一站式在线服务体系
大数据技术基础——基于Hadoop与Spark 电子书
将Hadoop和Spark组合起来进行剖析,呈现完整的大数据技术方案。
Python 3破冰人工智能:从入门到实战 电子书
数学基础:从历年数学建模竞赛入手,解读人工智能中的数学方法。 编程实践:100余个代码实例,全面讲解网络爬虫、数据存储与数据分析等内容。 算法应用:实战案例辅以丰富图解,详尽分析人工智能算法特性及其应用场景。
Oracle数据库基础与应用教程 电子书
本书全面讲述了Oracle数据库的日常管理工作内容。全书共14章,包含Oracle简介和安装、Oracle客户端、管理Oracle环境、Oracle体系结构、管理Oracle存储结构、SQL语言、表、约束、视图、同义词和序列、索引、实现数据库安全、DataPump数据导出和导入、数据库备份和恢复。每章结尾提供适量的选择题、简答题和操作题,通过练习和操作实践,帮助读者巩固所学内容。本书适合Oracl