Measure, Integration & Real Analysis

Measure, Integration & Real Analysis

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics.

Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn.

Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability.

Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online.

作者简介

Sheldonc Axler,11975年毕业于加州大学伯克利分校,1现为旧金山州立大学理工学院院长.a《美国数学月刊》的编委,1MathematicalcIntelligencer主编,1同时还是Springer的GTM研究生数学教材系列等多个系列丛书的主编。

Measure, Integration & Real Analysis是2019年由Springer出版,作者SheldonAxler。

得书感谢您对《Measure, Integration & Real Analysis》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
面向对象分析与设计 电子书
本书深刻剖析了面向对象分析与设计的概念和方法。
Python数据分析入门与实战 电子书
掌握数据分析技巧,运用强大的Python工具,解决工作中繁琐的数据问题。
Python数据分析与可视化(微课版) 电子书
本书讲解数据分析基础知识,针对数据分析与可视化的初学者介绍相关方法及概念。
Python程序设计——编程基础、Web开发及数据分析 电子书
《Python程序设计——编程基础、Web开发及数据分析》系统讲述了Python程序设计的基础知识。全书共15章,内容包括:Python概述、Python基本语法、Python的基本流程控制、Python的四种典型序列结构、Python函数、Python文件和数据库操作、面向对象程序设计、模块和包、字符串操作与正则表达式的使用、错误及异常处理、GUI编程、网络和多线程编程、基于Flask框架的We
电子商务数据分析及应用 电子书
本书共10章,内容包括:电子商务数据分析基础、电子商务数据指标体系搭建、电子商务数据采集、电子商务数据处理、电子商务数据分析方法、电子商务数据可视化、电子商务市场数据分析等。