Introduction to Time Series and Forecasting

Introduction to Time Series and Forecasting

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

Some of the key mathematical results are stated without proof in order to make the underlying theory accessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and nonstationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introductions are also given to cointegration and to nonlinear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

作者简介

Peter J. Brockwell and Richard A. Davis are Fellows of the American Statistical Association and the Institute of Mathematical Statistics and elected members of the International Statistics institute. Richard A. Davis is the current President of the Institute of Mathematical Statistics and, with W.T.M. Dunsmuir, winner of the Koopmans Prize. Professors Brockwell and Davis are co...

(展开全部)

Introduction to Time Series and Forecasting是2010年由Springer出版,作者PeterJ.Brockwell。

得书感谢您对《Introduction to Time Series and Forecasting》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
Python数据分析基础教程 电子书
从数据处理的角度来讲解统计分析。
数据结构(C语言版)(第2版) 电子书
适读人群 :普通高校电子信息大类本科生学习、考研,同时也适合零售和培训。   采用“案例驱动”的编写模式。书中结合实际应用,将各章按照“案例引入——数据结构及其操作——案例分析与实现”的案例驱动思路来展开。每章使用一个有趣的“问题案例”开头,由该案例逐步引入新的数据结构,然后给出该数据结构的存储表示及各种基本操作的实现,之后进一步分析此案例,最终利用该数据结构来实现此案例。   算法讲解更加细致。新版教材中对每个算法思想进行详细阐述,将用文字描述的算法步骤与用类C语言表述的算法描述一一对应。   优化教材内容。参考计算机专业全新的全国统考考研大纲,增加了大纲近两年新增的考点内容,如分块查找、外部排序等,有助于考研学生复习备考使用。
容器云的关键理论和方法研究 电子书
一本详细介绍容器云关键理论与方法的工具书。
人民邮电出版社Shell编程 电子书
从基础到精通全面介绍Linux Shell编程 畅销不衰的Linux经典入门图书 适用于各种常见版本的Linux Shell Linux管理人员的参考手册 丰富典型的实操案例 全程录像的视频讲解光盘
Docker实践(第2版) 电子书
Docker实践全攻略: 涵盖开发、DevOps及生产环境落地实用技巧。