机器学习实战 电子书

机器学习实战

9.9开通会员

编辑推荐

《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。

内容简介

机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。

《机器学习实战》主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。

《机器学习实战》通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高 级的功能,如汇总和简化等。

章节目录

展开全部

机器学习实战是2013年由人民邮电出版社出版,作者[美]PeterHarrington。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《机器学习实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
跟着迪哥学:Python数据分析与机器学习实战 电子书
本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
大数据技术基础——基于Hadoop与Spark 电子书
将Hadoop和Spark组合起来进行剖析,呈现完整的大数据技术方案。
算法精粹:经典计算机科学问题的Python实现 电子书
Python机器学习经典实例 电子书
用流行的Python库scikitlearn解决机器学习问题。
大数据技术原理与应用(第2版) 电子书
国内高校大数据课程知名教师倾心之作,带你“零基础”学习大数据。
Python 3破冰人工智能:从入门到实战 电子书
数学基础:从历年数学建模竞赛入手,解读人工智能中的数学方法。 编程实践:100余个代码实例,全面讲解网络爬虫、数据存储与数据分析等内容。 算法应用:实战案例辅以丰富图解,详尽分析人工智能算法特性及其应用场景。
深度学习 电子书
深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
机器学习及应用(在线实验+在线自测) 电子书
机器学习原理与实例代码,包括决策树、神经网络等11章。