Python数据分析基础与案例实战 电子书

Python数据分析基础与案例实战

9.9开通会员

内容简介

本书以Python数据分析的常用技术与交通行业真实案例相结合的方式,深入浅出地介绍了Python数据分析与挖掘技术的重要内容。全书共10章,内容包括绪论、Python数据分析简介、数据获取、数据探索、数据预处理、构建模型、运输车辆驾驶行为分析、公交车站点设置优化分析、铁路站点客流量预测,以及基于TipDM大数据挖掘建模平台实现运输车辆驾驶行为分析。本书大部分章节包含课后习题,通过练习和操作实践,读者可以巩固所学的内容。 本书可作为高校数据分析相关专业的教材,也可作为交通行业相关的教学、培训教材,还可作为数据分析爱好者的自学用书。

章节目录

展开全部

Python数据分析基础与案例实战是2023年由人民邮电出版社出版,作者张良均 主编。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《Python数据分析基础与案例实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
Python数据分析案例实战(慕课版) 电子书
全书共分10章,内容包括数据分析基础、NumPy模块实现数值计算、pandas模块实现统计分析、Maplotlib模块实现数据可视化、客户价值分析、销售收入分析与预测、二手房数据分析预测系统、智能停车场运营分析系统、影视作品分析和看店宝。
Python商务数据分析与实战 电子书
|a本书以Python数据分析常用技术与真实案例相结合的方式,介绍Python商务数据分析应用的重要内容。全书共10章,内容包括:商务数据分析概述、Python数据分析简介、数据获取、探索性分析、数据预处理等。
Python数据分析与挖掘实战 电子书
本书共11章,分为基础篇(第1-5章)和实战篇(第6-11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识:实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预测、电视产品个性化推荐,以及基于TipDM大数据挖掘建模平台实现金融服务机构资金流量预测。本书大部分章节包含实训和课后
Python数据分析入门与实战 电子书
本书系统地描述了如何利用Python语言进行数据分析。由浅入深的编写方式可以帮助读者轻松愉快地进入数据的世界。全书从理论到实践、从基础语法到科学计算库,循序渐进地讲解了Python数据分析所需要学习的技能。搭配项目实战帮助读者更好、更快地掌握Python数据分析知识点。此外,还全面介绍了数据分析的必知必会技能。本书提供代码资源下载服务,每章均配有重要知识点串讲视频。本书不仅适合零基础喜欢数据分析的
Excel数据分析基础与实战 电子书
本书以任务为导向,全面介绍了数据分析的流程和Excel数据分析的应用,并详细阐述了使用Excel2016解决企业实际问题的方法。全书共11章,分为基础部分(第1~6章)和实战部分(第7~11章)。基础部分的内容包括数据分析与Excel2016概述、外部数据的获取、数据处理、函数的应用、数据透视表和数据透视图、数据分析与可视化;实战部分为新零售智能销售数据分析项目实战,内容包含项目数据处理、商品销售
Python数据分析与挖掘 电子书
本书面向大数据应用型人才,以任务为导向,系统地介绍Python数据分析与挖掘的常用技术与真实案例。全书共7章,第1、2章介绍Python数据分析的常用模块及其应用,涵盖NumPy数值计算模块、pandas数据分析模块,较为系统地阐述Python数据分析的方法;第3、4章介绍轻量级的数据交换格式JSON和连接MySQL数据库的pymysql模块,并以此进行数据综合案例的分析;第5章介绍Matplot
数据分析基础与实战(微课版) 电子书
本书主要介绍数据分析的基础知识和实操过程。全书共7章,首先从数据分析概述入手,介绍数据分析的基础知识、数据分析的流程、常用的数据分析方法及数据分析的道德与职业原则。接着以八爪鱼采集器和Excel为例,从商务数据采集概述及初级应用、数据采集高级应用及采集实例、数据清洗与整理、数据可视化、数据分析报告的撰写等数据分析的流程切入,结合具体的案例进行详细讲解。最后为数据分析案例实践,主要介绍旅游产品的游记
Python数据分析 电子书
本书全面讲解Python数据分析的相关知识和技术,内容包括Python数据分析概述、NumPy数值计算、Matplotlib数据可视化、Pandas数据分析、数据预处理、Sklearn机器学习。  本书以培养学生编程能力和数据分析能力为目标,注重技术应用能力的培养。  本书内容充实、结构合理、实用性强,具有明确的应用能力培养目标,易于接受和理解,学完本书后,可以具备数据分析的基本能力。  本书适合