Python数据挖掘实战(微课版) 电子书

Python数据挖掘实战(微课版)

9.9开通会员

内容简介

数据挖掘旨在发现蕴含在数据中的有价值的数据模式、知识或规律,是目前非常热门的研究领域。理解数据挖掘模型的原理、方法并熟练掌握其实现技术是数据挖掘从业者必备的能力。 本书从理论模型和技术实战两个角度,全面讲述数据挖掘的基本流程、模型方法、实现技术及案例应用,帮助读者系统地掌握数据挖掘的核心技术,培养读者从事数据挖掘工作的基本能力。全书共12章,主要内容包括数据探索、数据预处理、特征选择、基础分类模型及回归模型、集成技术、聚类分析、关联规则分析、时间序列挖掘、异常检测、智能推荐等。除第1章、第2章外,本书以一章对应一个主题的形式完整描述相应主题的数据挖掘模型,简洁、清晰地介绍其基本原理和算法步骤,并结合Python语言介绍数据挖掘模型的实现技术,同时结合案例分析数据挖掘模型在数据挖掘中的应用。此外,书中还通过大量的图、表、代码、示例帮助读者快速掌握相关内容。 本书适合作为相关专业本科生和研究生的数据挖掘课程的教材,也可以作为数据挖掘技术爱好者或从业者的入门参考书。

章节目录

展开全部

Python数据挖掘实战(微课版)是2023年由人民邮电出版社出版,作者王磊。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《Python数据挖掘实战(微课版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
Python大数据分析与挖掘实战(微课版) 电子书
本书以应用为导向,将理论与实践相结合,深入浅出地介绍了利用Python进行大数据分析与挖掘的基本知识,以及如何将其应用到具体领域的方法。本书分3篇:基础篇、案例篇和提高篇。基础篇(第1章-第6章)主要介绍Python基础知识及应用于科学计算、数据处理、数据可视化、机器学习、深度学习等方面的基础知识;案例篇(第7章-第11章)主要介绍利用Python进行金融、地理信息、交通、文本分析、图像识别等领域
Python实战教程(微课版) 电子书
本书共16章,内容涵盖基本数据类型、自定义函数、控制语句、自定义模块和导入语句等Python基础知识,面向对象编程、文件管理和路径管理、序列化和持久化等Python中级知识,Web开发、数据库开发等Python高级知识,字符编码、BOM等拓展知识。
Python数据分析与挖掘实战 电子书
本书共11章,分为基础篇(第1-5章)和实战篇(第6-11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识:实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预测、电视产品个性化推荐,以及基于TipDM大数据挖掘建模平台实现金融服务机构资金流量预测。本书大部分章节包含实训和课后
Python数据预处理(微课版) 电子书
本书以JupyterNotebook为主要开发工具,全面地介绍数据预处理的相关知识。全书共分8章,内容分别为初识Python数据预处理、数据获取与存储、数据清洗、数据集成、数据变换、数据规约、综合实战:家用热水器用户行为分析以及两个综合实战项目。每个章节均配置了丰富的示例或案例,通过本书的学习,读者可以充分理解常用数据预处理方法的精髓、掌握具体技术细节,并在实践中提升实际开发能力,为数据分析和机器
Python数据预处理(微课版) 电子书
本书的设计和编写目标是培养读者的数据思维能力和数据预处理能力,内容具有典型性和实用性,系统介绍基于Python的数据预处理的流程和技术。全书共8个单元,单元1介绍数据预处理的基础知识,单元2介绍Python数据预处理的库pandas的用法及主要数据对象的用法,单元3~单元7依次介绍数据预处理流程中数据获取、数据合并、数据清洗、数据变换和数据描述等相关知识和技术。为突出培养读者的动手能力,本书单元2
Python数据可视化(微课版) 电子书
本书共12章,主要内容包括第1章介绍数据可视化的基础知识,第2章介绍Python数据可视化库及其参数配置,第3章介绍时序数据的可视化,并通过实际案例讲解其可视化方法,第4章介绍金融数据的可视化,并通过实际案例讲解其可视化方法,第5章介绍空间数据的可视化,并通过实际案例讲解其可视化方法,第6章介绍地理数据的可视化,并通过实际案例讲解其可视化方法,第7章介绍层次数据的可视化,并通过实际案例讲解其可视化
Python爬虫开发实战教程(微课版) 电子书
本书共5章,介绍了爬虫的基本结构及工作流程、抓包工具、模拟网络请求、网页解析、去重策略、常见反爬措施,以及大型商业爬虫框架Scrapy的应用,最后介绍了数据分析及可视化的相关基础知识。
R语言数据分析与挖掘(微课版) 电子书
本书由浅入深,内容丰富。全书共11章,主要内容包括第1章R语言数据分析概述、第2章R语言数据操作基础、第3章数据读写、第4章数据预处理、第5章数据的描述统计分析、第6章数据相关性分析、第7章R语言可视化基础、第8章高级可视化工具、第9章聚类分析、第10章关联规则、第11章分类及预测。