本书着力于介绍数据挖掘基础知识、基本原理、常用算法,主要内容包括数据挖掘概述、数据的描述与可视化、数据的采集和预处理、数据的归约、关联规则挖掘、分类与预测、非线性预测模型、聚类分析、深度学习简介、使用Weka进行数据挖掘。本书通俗易懂,注重基础知识、基本原理和基本方法,注重启发和引申,以培养学生独立思考和独立发现的能力。 本书适合作为数据科学与大数据、信息管理、统计等专业的本科层次基础课教材,也
随着互联网、云计算和人工智能等高科技信息技术的飞速发展,人类已迈入大数据时代,但很多时候我们会感到被数据淹没,却缺乏知识的困境,并没有“得数据者得天下”的能力,我们迫切需要从海量数据中,找到值得参考的样型或规则,转换成有价值的信息或知识,创造更多新价值,因此,数据挖掘成了我们提取数据信息的必要窗口。 本书共8章,主要介绍了数据挖掘的理论方法与实践应用,内容涵盖了关联规则挖掘、决策树分析、聚类分析、支持向量机、KNN算法、贝叶斯分类算法以及随机森林分类算法等内容。
数据挖掘及其应用是2019年由中国铁道出版社出版,作者李燕。
温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《数据挖掘及其应用》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。