深度学习与TensorFlow实战 电子书

深度学习与TensorFlow实战

内容简介

本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到感知器的内容,讲解基于MCP神经元实现布尔逻辑、感知器、使用感知器做分类等;第4章介绍人工神经网络,讲述的内容包括从感知器到多层感知器、带有权值的MCP神经元—感知器、反向传播神经网络、使用人工神经网络分类mnist;第5章介绍Logistic回归与Softmax回归;第6章介绍卷积神经网络,讲述感知器模式识别、卷积操作、卷积神经网络的结构、使用TensorFlow实现卷积神经网络的实例;第7章介绍循环神经网络,包括循环神经网络的特征、有限状态机、从MCP神经网络到循环神经网络等;第8章介绍LSTM循环神经网络,包括梯度弥散现象、长短期记忆网络、通过TensorFlow实现一个简单的LSTM;第9章深入讨论TensorFlow,讲解机器学习框架、计算图、神经网络与计算图、TensorFlow中的数据流图、使用GPU、数据可视化工具TensorBoard等;第10章为TensorFlow案例实践,包括构建TensorFlow的图片分类系统、准备代码和训练集、构造模型计算图、训练模型、评估模型的性能、多GPU训练等。

本书旨在帮助具有较少数学基础并期望在深度学习上有所作为的学习者,希望为他们提供一个快速上手深度学习的实战教程。本书适合阅读的读者包括相关专业的本科生或研究生,以及不具有机器学习或统计知识背景但想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。

章节目录

展开全部

深度学习与TensorFlow实战是2018年由人民邮电出版社出版,作者李建军 王希铭 潘勉 等。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《深度学习与TensorFlow实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
TensorFlow 2深度学习实战 电子书
本书以深度学习的常用技术与TensorFlow2真实案例相结合的方式,深入浅出地介绍TensorFlow2实现深度学习的重要内容。全书共7章,分为基础篇(第1~3章)和实战篇(第4~7章),基础篇内容包括深度学习概述、TensorFlow2快速入门、深度神经网络原理及实现等基础知识;实战篇内容包括4个案例,分别为基于CNN的门牌号识别、基于LSTM网络的语音识别、基于CycleGAN的图像风格转换
深度学习原理与 TensorFlow实践 电子书
本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
TensorFlow深度学习基础与应用 电子书
本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
PyTorch与深度学习实战 电子书
本书以PyTorch深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用PyTorch实现深度学习应用的重要内容。本书共7章,内容包括深度学习概述、PyTorch深度学习通用流程、PyTorch深度学习基础、手写汉字识别、文本生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现文本生成等。本书大部分章包含实训和课后习题,希望通过练习和操作实践,帮助读者巩固所学的内
Keras与深度学习实战 电子书
本书以Keras深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用Keras进行深度学习的重要内容。全书共7章,内容包括深度学习概述、Keras深度学习通用流程、Keras深度学习基础、基于RetinaNet的目标检测、基于LSTM网络的诗歌生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现诗歌生成等。本书大部分章包含实训和课后习题,通过练习和操作实践,读者可
TensorFlow深度学习从入门到进阶 电子书
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其支持多种客户端语言下的安装和运行。本书以TensorFlow为导线,进行机器学习,书中每章节都是以理论引出,TensorFlow应用巩固结束,理论与实践相结合,让读者快速掌握TensorFlow机器学习。本书共10章,主要包括内容有:TensorFlow介绍、TensorFlow编辑基础、TensorFlow进阶
Python深度学习与项目实战 电子书
本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
深度学习实战之PaddlePaddle 电子书
内容提要本书全面讲解了深度学习框架PaddlePaddle,并结合典型案例,阐述了PaddlePaddle的具体应用。本书共15章。第1章介绍了深度学习及其主流框架;第2章介绍了几种不同的PaddlePaddle安装方式;第3章使用MNIST数据集实现手写数字识别;第4章介绍CIFAR彩色图像识别;第5章介绍了自定义数据集的识别;第6章介绍了验证码的识别;第7章介绍了场景文字的识别;第8章实现了验