Python机器学习入门与实战 电子书

Python机器学习入门与实战

9.9开通会员

编辑推荐

本书以零基础讲解为特色,用实例引导读者学习,深入浅出地介绍Python机器学习的相关知识和实战技能。

内容简介

本书以零基础讲解为特色,用实例引导读者学习,深入浅出地介绍Python机器学习的相关知识和实战技能。全书共17章,分为5篇。第Ⅰ篇为机器学习入门篇,包含第1章,主要介绍机器学习的概念、机器学习研究的主要任务、如何选择合适的算法及机器学习研究问题的一般步骤等;第Ⅱ篇为工具模块使用篇,包含第2~4章,主要介绍数组计算NumPy、数据分析Pandas、图形展示Matplotlib等;第Ⅲ篇为专业技能提升篇,包含第5~13章,主要介绍算法综述、决策树、朴素贝叶斯、逻辑回归、支持向量机、AdaBoost、线性回归、k-means、PCA等;第Ⅳ篇为深度学习延伸篇,包含第14章,主要介绍卷积神经网络;第Ⅴ篇为项目技能实战篇,包含第15~17章,主要介绍验证码识别、答题卡识别、机器学习简历指导等。同时,本书随书赠送了大量相关的学习资料,以便读者扩展学习。本书适用于任何想学习Python机器学习的读者。无论读者是否从事Python相关工作,是否接触过Python,均可通过学习本书快速掌握Python机器学习的开发方法和技巧。

章节目录

展开全部

Python机器学习入门与实战是2023年由人民邮电出版社出版,作者桑园 编著。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《Python机器学习入门与实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
机器学习Python实战 电子书
本书使用Python的机器学习算法库scikit-learn讲解机器学习重要算法的应用,内容包括机器学习认知、数据预处理、KNN算法、线性回归算法、逻辑回归算法、朴素贝叶斯算法、决策树与随机森林算法、支持向量机、k-mcans算法、神经网络、模型评估与优化。本书使用通俗易懂的语言、丰富的图表和大量的案例对机器学习的重要算法进行讲解,提供一条从实践出发掌握机器学习知识的途径,读者即使没有很扎实的数学
Python机器学习入门 电子书
Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它具有丰富和强大的模块(库),能够很轻松地把用其他编程语言(尤其是C/C++)编写的各种模块联结在一起。这两年随着人们对人工智能的关注越来越多,大家对Python的学习热情也越来越高。在IEEE发布的编程语言排行榜中,Python已经多年排名第一。这本Python编程与机器学习的入门书,首先介绍了一些Python编程的基础知识,然
Python机器学习编程与实战 电子书
本书共8章,内容包括Python概述、NumPy数值计算、pandas基础、pandas进阶、Matplotlib绘图、scikit-learn、餐饮企业综合分析与预测、通信运营商客户流失分析与预测。前6章设置了选择题、填空题和操作题,后两章设置了操作题,希望通过练习和操作实践,读者可以巩固所学的内容。
Python机器学习开发实战 电子书
Python机器学习入门,以实战为重点,配有大量代码和案例,简单、快速、易学。
跟着迪哥学:Python数据分析与机器学习实战 电子书
本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
Python机器学习 电子书
《Python机器学习》从实用的角度出发,整合Python语言基础、数据分析与可视化、机器学习常用算法等知识。内容从*基本的Python编程基础入手,由浅入深、循序渐进地讲授NumPy库和Matplotlib库,以及复杂的机器学习基本理论和算法,并突出知识的实用性和可操作性。《Python机器学习》力求以浅显的语言讲解复杂的知识,以直观的案例辅助读者理解,并以图表形式展示代码和运行结果,配合习题巩
机器学习与Python实践 电子书
机器学习理论实践全书,12章内容丰富,适合各层次读者。
机器学习原理与实战 电子书
本书共11章,分别介绍了机器学习概述、数据准备、特征工程、有监督学习、无监督学习、智能推荐的相关知识,并介绍了市财政收入分析案例、基于非侵入式电力负荷监测与分解的电力分析案例、航空公司客户价值分析案例、广电大数据营销推荐案例以及基于TipDM数据挖掘建模平台实现航空公司客户价值分析案例。