R语言高效能实战:更多数据和更快速度 电子书

R语言高效能实战:更多数据和更快速度

9.9开通会员

内容简介

本书将目标设定为“在一台笔记本电脑上能够运行”,从单机大型数据集处理策略、提升计算性能、其他工具和技巧3个方面介绍了使用R语言处理数据时的实用方法。主要内容包括数据集占用空间、善用data.table处理数据、数据分块处理、提升硬盘资源使用效率、并行编程技术、提升机器学习性能,以及其他资源管理和提高性能的实用策略。

章节目录

展开全部

R语言高效能实战:更多数据和更快速度是2022年由人民邮电出版社出版,作者著。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《R语言高效能实战:更多数据和更快速度》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
R语言与数据分析实战 电子书
本书共13章,主要包括:数据分析概述及R语言环境,R语言的数据对象及其类型,R语言数据存储与读取,R语言编程,R语言可视化,R语言描述性统计,R语言参数估计,R语言参数假设检验等内容。
数据挖掘——基于R语言的实战 电子书
本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。
R语言医学数据分析实战 电子书
以医学数据为例,讲解如何使用R进行数据分析。
文本数据挖掘——基于R语言 电子书
文本是一种特殊的非结构化数据,在当今的大数据时代,其价值日趋凸显。本书利用开源而强大的R软件,对文本数据挖掘的概念、技术及技巧进行了系统的介绍。本书共11章,内容包括:走进文本数据挖掘,R语言快速入门,字符串的基本处理,用好正则表达式,导入各类文本数据,对各类文本数据进行预处理,文本特征提取的4种方法,基于机器学习的文本分类方法,文本情感分析,文本可视化,文本数据挖掘项目实践。本书还提供了丰富的应
数据可视化——基于R语言 电子书
本书以R语言为实现工具,以数据可视化分析为导向,结合实际案例介绍数据可视化方法。全书共8章,第1章介绍数据可视化概述以及R语言数据处理的基本技能;第2章介绍R语言绘图基础,重点介绍R语言传统绘图包graphics中的绘图函数及基本使用方法;第3章介绍类别数据的可视化方法;第4章介绍数据分布特征的可视化方法;第5章介绍变量间关系的可视化方法;第6章介绍样本相似性的可视化方法;第7章介绍时间序列的可视
大数据数学基础(R语言描述) 电子书
本书全面地讲解了在科学领域运用广泛的数据微积分、线性代数、统计学、数值计算、多元统计分析等数学基础知识。全书共6章:第1章介绍了大数据与数学、数学与R语言的关系;第2章介绍了微积分的基础知识,包括函数、极限、导数、微分、不定积分与定积分及其应用;第3章介绍了线性代数的基础知识,包括矩阵的运算、行列式、特征分解、奇异值分解;第4章介绍了统计学的基础知识,包括数据分布特征、概率论、随机变量的数字特征、
Python与R语言数据科学实践 电子书
J.
本书从数据科学的角度,讲解了Python和R的语言特性以及各自的优缺点,介绍了包括包、框架和工作流在内的开源生态系统,分析了Python和R分别适用于哪些业务场景,并通过真实的案例演示如何在单个工作流中集成Python与R,使两种语言充分发挥优势,改善业务应用的效果。本书还提供了Python和R的对照翻译,帮助读者在两种语言间快速切换。本书适合数据科学领域有一定Python或R基础的开发人员阅读,
Spark海量数据处理:技术详解与平台实战 电子书
在数字经济时代,数据是重要的资源要素;同时,新的数据又在源源不断地产生,企业面临的一个基本问题就是如何管理和利用这些数据,这对传统的数据处理方法与分析框架提出了新的诉求和挑战,也是全球业界与学界为关心的问题。为了满足大数据时代对信息的快速处理的需求,一个分布式的开源计算框架Apache Spark应运而生。经过十年的发展,Spark已经成为目前大数据处理的标杆,在整个业界得到了广泛的使用。对大数据工程师来说,用Spark构建数据管道无疑是很好的选择,而对数据科学家来说,Spark也是高效的数据探索工具。 本书基于Spark发行版2.4.4写作而成,包含大量的实例与一个完整项目,技术理论与实战相结合,层次分明,循序渐进。本书不仅介绍了如何开发Spark应用的基础内容,包括Spark架构、Spark编程、SparkSQL、Spark调优等,还探讨了Structured Streaming、Spark机器学习、Spark图挖掘、Spark深度学习、Alluxio系统等高级主题,同时完整实现了一个企业背景调查系统,借鉴了数据湖与Lambda架构的思想,涵盖了批处理、流处理应用开发,并加入了一些开源组件来满足业务需求。学习该系统可以使读者从实战中巩固所学,并将技术理论与应用实战融会贯通。 本书适合准备学习Spark的开发人员和数据分析师,以及准备将Spark应用到实际项目中的开发人员和管理人员阅读,也适合计算机相关专业的高年级本科生和研究生学习和参考,对于具有一定的Spark使用经验并想进一步提升的数据科学从业者也是很好的参考资料。