数据挖掘 电子书

数据挖掘

9.9开通会员

内容简介

本书着力于介绍数据挖掘基础知识、基本原理、常用算法,主要内容包括数据挖掘概述、数据的描述与可视化、数据的采集和预处理、数据的归约、关联规则挖掘、分类与预测、非线性预测模型、聚类分析、深度学习简介、使用Weka进行数据挖掘。本书通俗易懂,注重基础知识、基本原理和基本方法,注重启发和引申,以培养学生独立思考和独立发现的能力。  本书适合作为数据科学与大数据、信息管理、统计等专业的本科层次基础课教材,也可作为相关专业研究生层次的参考用书。

章节目录

展开全部

数据挖掘是2019年由中国铁道出版社出版,作者宋万清。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《数据挖掘》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
数据挖掘及其应用 电子书
随着互联网、云计算和人工智能等高科技信息技术的飞速发展,人类已迈入大数据时代,但很多时候我们会感到被数据淹没,却缺乏知识的困境,并没有“得数据者得天下”的能力,我们迫切需要从海量数据中,找到值得参考的样型或规则,转换成有价值的信息或知识,创造更多新价值,因此,数据挖掘成了我们提取数据信息的必要窗口。  本书共8章,主要介绍了数据挖掘的理论方法与实践应用,内容涵盖了关联规则挖掘、决策树分析、聚类分析
机器学习与数据挖掘 电子书
本书以项目实践作为主线,结合必需的理论知识,以任务的形式进行内容设计,每个任务都包含任务描述及任务实施的步骤,读者按照实施步骤进行操作就可以完成相应的学习任务,从而不断提升项目实践能力。本书主要内容涉及机器学习的基础知识,模型评估与选择,回归、分类、聚类等机器学习算法,数据挖掘的基础知识,数据分析与应用,以及通过用户行为分析预测项目学习如何将机器学习与数据挖掘应用到实际中。本书适合使用机器学习与数
Python数据处理与挖掘 电子书
本书以构建完整的知识体系为目标,按照从简单到复杂的思路,贯穿了数据处理与挖掘的各个环节,具体包括:Python快速入门、Python数据类型、Python常用模块、Python数据获取、Python数据挖掘基础、Python数据挖掘算法、Python大数据挖掘和Python数据可视化。此外,针对各知识点,全书均设计了相应的Python案例,并给出了实现代码、效果图以及相应的解释,以强化读者对各知识
Python数据分析与挖掘 电子书
本书面向大数据应用型人才,以任务为导向,系统地介绍Python数据分析与挖掘的常用技术与真实案例。全书共7章,第1、2章介绍Python数据分析的常用模块及其应用,涵盖NumPy数值计算模块、pandas数据分析模块,较为系统地阐述Python数据分析的方法;第3、4章介绍轻量级的数据交换格式JSON和连接MySQL数据库的pymysql模块,并以此进行数据综合案例的分析;第5章介绍Matplot
文本数据挖掘——基于R语言 电子书
文本是一种特殊的非结构化数据,在当今的大数据时代,其价值日趋凸显。本书利用开源而强大的R软件,对文本数据挖掘的概念、技术及技巧进行了系统的介绍。本书共11章,内容包括:走进文本数据挖掘,R语言快速入门,字符串的基本处理,用好正则表达式,导入各类文本数据,对各类文本数据进行预处理,文本特征提取的4种方法,基于机器学习的文本分类方法,文本情感分析,文本可视化,文本数据挖掘项目实践。本书还提供了丰富的应
Python数据分析与挖掘实战 电子书
本书共11章,分为基础篇(第1-5章)和实战篇(第6-11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识:实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预测、电视产品个性化推荐,以及基于TipDM大数据挖掘建模平台实现金融服务机构资金流量预测。本书大部分章节包含实训和课后
数据挖掘——基于R语言的实战 电子书
本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。
Python数据挖掘实战(微课版) 电子书
数据挖掘旨在发现蕴含在数据中的有价值的数据模式、知识或规律,是目前非常热门的研究领域。理解数据挖掘模型的原理、方法并熟练掌握其实现技术是数据挖掘从业者必备的能力。本书从理论模型和技术实战两个角度,全面讲述数据挖掘的基本流程、模型方法、实现技术及案例应用,帮助读者系统地掌握数据挖掘的核心技术,培养读者从事数据挖掘工作的基本能力。全书共12章,主要内容包括数据探索、数据预处理、特征选择、基础分类模型及