本书从Python基本语法入手,逐步介绍必备的数学知识与神经网络的基本知识,并利用介绍的内容编写一个深度学习框架TensorPy。然后描述GAN涉及的思想、模型与数学原理,接着便通过TensorFlow实现传统的GAN,并讨论为何一定需要生成器或判别器。接下来,介绍GAN各种常见的变体,包括卷积生成对抗网络、条件生成对抗网络、循环一致性、改进生成对抗网络、渐近增强式生成对抗网络等内容。
本书以TensorFlow 1.2为基础,从基本概念、内部实现和实践等方面深入剖析了TensorFlow。书中首先介绍了TensorFlow设计目标、基本架构、环境准备和基础概念,接着重点介绍了以数据流图为核心的机器学习编程框架的设计原则与核心实现,紧接着还将TensorFlow与深度学习相结合,从理论基础和程序实现这两个方面系统介绍了CNN、GAN和RNN等经典模型,然后深入剖析了TensorFlow运行时核心、通信原理和数据流图计算的原理与实现,最后全面介绍了TensorFlow生态系统的发展。
深入理解TensorFlow:架构设计与实现原理是2018年由人民邮电出版社出版,作者彭靖田 林健 白小龙。
温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《深入理解TensorFlow:架构设计与实现原理》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。