本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
本书从Python基本语法入手,逐步介绍必备的数学知识与神经网络的基本知识,并利用介绍的内容编写一个深度学习框架TensorPy。然后描述GAN涉及的思想、模型与数学原理,接着便通过TensorFlow实现传统的GAN,并讨论为何一定需要生成器或判别器。接下来,介绍GAN各种常见的变体,包括卷积生成对抗网络、条件生成对抗网络、循环一致性、改进生成对抗网络、渐近增强式生成对抗网络等内容。
深入浅出GAN生成对抗网络:原理剖析与TensorFlow实践是2020年由人民邮电出版社出版,作者廖茂文 潘志宏。
温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《深入浅出GAN生成对抗网络:原理剖析与TensorFlow实践》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。