在计算机视觉处理中,特征指的是能够解决某种特定任务的信息。图像局部特征在目标识别、目标跟踪、目标匹配、三维重建、图像检索等应用中发挥着重要的作用。它是近20年来在计算机视觉领域中研究的热点问题之一。
本书以OpenCV 2.4.9为研究工具,对其实现的所有新的特征检测和描述算法—Kitchen-Rosenfeld、Canny、Harris、Shi-Tomasi、FAST、MSER、MSCR、SIFT、SURF、BRISK、BRIEF、ORB、FREAK、CenSurE、SimpleBlob等,不仅详细分析了它们的原理和实现方法,还进行了详细的源码解析,并且给出了具体的程序实现范例,充分体现了理论与实践相结合的特点。
图像局部特征检测和描述:基于OpenCV源码分析的算法与实现是2018年由人民邮电出版社出版,作者赵春江。
温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《图像局部特征检测和描述:基于OpenCV源码分析的算法与实现》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。