在机器学习算法的实际应用中,我们不仅要知道算法的原理,也要了解如何评估算法上线服务的可靠性。
机器学习算法评估力求用科学的指标,对机器学习算法进行完整、可靠的评价。本书详细介绍机器学习算法评估的理论、方法和实践。全书分为3个部分。第1部分包含第1章~第3章,针对分类算法、回归算法和聚类算法分别介绍对应的基础理论和评估方法;第2部分包含第4章~第8章,介绍更复杂的模型(如深度学习模型和集成树模型)的对比与评估,并且针对它们实际应用的业务场景介绍一些特有的评估指标和评估体系;第3部分包含第9章~第11章,总结算法评估的常用工具、技术及方法论,包括实用的可视化工具介绍,并讨论机器学习算法的本质。本书适合机器学习专业相关从业者和算法工程师阅读,也适合想要从事人工智能和机器学习工作的人士学习和参考。
机器学习算法评估实战是2021年由人民邮电出版社出版,作者宋亚统。
温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《机器学习算法评估实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。