数据分析——统计、描述、预测与应用(计算机科学与技术丛书)

数据分析——统计、描述、预测与应用(计算机科学与技术丛书)

因版权原因待上架

编辑推荐

《数据分析——统计、描述、预测与应用》是一本系统论述数据分析的原则和方法的学习指南。本书宏观而且系统地给出了数据分析的一般理论与方法,这对于理解和进行数据分析实践极具参考价值。本书涉及的基本概念、基本理论与分析方法的相关术语通俗易懂,易于理解。学习本书无需统计或编程技术的知识基础。本书三位作者均是数据分析领域的著名科学家,他们在书中深入浅出剖析了数据分析背后的方法论,并给出了练习与实例,便于读者动手实践。此外,作者们制作了实用的教学课件,可供相关高校计算机、大数据、金融学等专业授课使用。

内容简介

本书介绍数据分析的统计基础、种类划分,并列举大量实例以说明数据分析方法和算法。内容主要分为4部分,第1部分为第1章,介绍一些概念,简单描述数据分析方法和一些实例; 第2部分包括第2~7 章,介绍描述性分析和数据预处理的主要方法,包括描述统计、多元描述分析、聚类以及频繁模式挖掘等;第3部分包括第8~12章,介绍预测性分析的主要方法,其中包括多种回归算法、二元回归、分类的性能测量以及基于概率和距离测量的方法,以及决策树、人工神经网络和支持向量机等较为先进的方法; 第4部分为第13章,利用描述和预测这两种方法,简单讨论文本、网页以及社交媒体的应用。


作者简介

[葡]乔·门德斯·莫雷拉(João Mendes Moreira)

博士,葡萄牙波尔图大学(University of Porto)工程系教授,葡萄牙波尔图人工智能与决策支持实验室(LIAAD-INESC TEC, Porto)研究员。

[巴]安德烈·卡瓦略(André de Carvalho)

博士,巴西圣保罗大学(São Paulo)数学和计算机科学研究所教授。

[匈]托马斯·霍瓦斯(Tomáš Horváth)

博士,匈牙利布达佩斯罗兰大学(Eötvös Loránd University )助理教授,与斯洛伐克科希策帕沃尔·约瑟夫·沙法利克大学(Pavol Jozef Šafárik University)长期进行科研合作。

章节目录

第1部分背 景 介 绍

第1章我们可以用数据做什么

1.1大数据和数据科学

1.2大数据架构

1.3小数据

1.4什么是数据

1.5数据分析简单分类

1.6数据使用实例

1.6.1美国威斯康星州的乳腺癌数据

1.6.2波兰企业破产数据

1.7一个数据分析项目

1.7.1数据分析方法论简史

1.7.2KDD过程

1.7.3CRISPDM方法

1.8本书的组织结构

1.9本书面向的对象

第2部分理 解 数 据

第2章描述统计学

2.1尺度类型

2.2描述单元分析

2.2.1单元频数

2.2.2单元数据可视化

2.2.3单元统计

2.2.4常见的单元概率分布

2.3描述性双元分析

2.3.1两个定量属性

2.3.2两个定性属性,其中至少有一个是名义属性

2.3.3两个序数属性

2.4本章小结

2.5练习

第3章描述性多元分析

3.1多元频数

3.2多元数据可视化

3.3多元统计

3.3.1位置多元统计

3.3.2离散多元统计

3.4信息图和词云

3.4.1信息图

3.4.2词云

3.5本章小结

3.6练习

第4章数据质量和预处理

4.1数据质量

4.1.1缺失值

4.1.2冗余数据

4.1.3不一致数据

4.1.4噪声数据

4.1.5离群值

4.2转换为不同的尺度类型

4.2.1名义尺度转换为相对尺度

4.2.2序数尺度转换为相对或绝对尺度

4.2.3相对或绝对尺度转换为序数或名义尺度

4.3转换为不同尺度

4.4数据转换

4.5维度降低

4.5.1属性聚合

4.5.2属性选择

4.6本章小结

4.7练习

第5章聚类

5.1距离度量

5.1.1常见属性类型值之间的差异

5.1.2定量属性对象的距离度量

5.1.3非常规属性的距离度量

5.2聚类验证

5.3聚类技术

5.3.1K均值

5.3.2DBSCAN

5.3.3聚合层次聚类技术

5.4本章小结

5.5练习

第6章频繁模式挖掘

6.1频繁项集

6.1.1设置最小支持度阈值

6.1.2Apriori——基于连接的方法

6.1.3Eclat算法

6.1.4FPGrowth

6.1.5最大频繁项集和闭合频繁项集

6.2关联规则

6.3支持度与置信度的意义

6.3.1交叉支持度模式

6.3.2提升度

6.3.3辛普森悖论

6.4其他模式

6.4.1序列模式

6.4.2频繁序列挖掘

6.4.3闭合和最大序列

6.5本章小结

6.6练习

第7章描述性分析的备忘单和项目

7.1描述性分析备忘单

7.1.1数据总结

7.1.2聚类方法

7.1.3频繁模式挖掘

7.2描述性分析项目

7.2.1理解业务

7.2.2理解数据

7.2.3准备数据

7.2.4建模

7.2.5评价

7.2.6部署

第3部分预 测 未 知

第8章回归

8.1预测性能评估

8.1.1泛化

8.1.2模型验证

8.1.3回归的预测性能度量

8.2寻找模型参数

8.2.1线性回归

8.2.2偏差方差权衡

8.2.3收缩方法

8.2.4使用属性的线性组合方法

8.3技术选型

8.4本章小结

8.5练习

第9章分类

9.1二元分类

9.2分类的预测性能度量

9.3基于距离的学习算法

9.3.1k近邻算法

9.3.2基于案例的推理

9.4概率分类算法

9.4.1逻辑回归算法

9.4.2朴素贝叶斯(NB)算法

9.5本章小结

9.6练习

第10章其他预测方法

10.1基于搜索的算法

10.1.1决策树归纳算法

10.1.2回归决策树

10.2基于优化的算法

10.2.1人工神经网络

10.2.2支持向量机

10.3本章小结

10.4练习

第11章高级预测话题

11.1集成学习

11.1.1Bagging

11.1.2随机森林

11.1.3AdaBoost

11.2算法的偏差

11.3非二元分类任务

11.3.1单类分类

11.3.2多类分类

11.3.3排序分类

11.3.4多标签分类

11.3.5层次分类

11.4高级预测数据准备技术

11.4.1数据分类不均衡

11.4.2不完全目标标记

11.5具有监督可解释技术的描述和预测

11.6练习

第12章预测性分析的备忘单和项目

12.1预测性分析备忘单

12.2预测性分析项目

12.2.1业务理解

12.2.2数据理解

12.2.3数据准备

12.2.4建模

12.2.5评估

12.2.6部署

第4部分常见的数据分析应用

第13章文本、网络和社交媒体应用

13.1文本挖掘

13.1.1数据采集

13.1.2特征提取

13.1.3剩下的阶段

13.1.4趋势

13.2推荐系统

13.2.1反馈

13.2.2推荐任务

13.2.3推荐技术

13.2.4小结

13.3社交网络分析

13.3.1社交网络的表示

13.3.2节点的基本属性

13.3.3网络的基本和结构属性

13.3.4趋势和小结

13.4练习

附录A对CRISPDM方法的全面描述

参考文献


数据分析——统计、描述、预测与应用(计算机科学与技术丛书)是2021年由清华大学出版社出版,作者[葡]乔·门德斯·莫雷拉,[巴西]安德烈·卡。

得书感谢您对《数据分析——统计、描述、预测与应用(计算机科学与技术丛书)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
大数据技术与应用基础 电子书
本书在介绍大数据发展背景、特点及主要技术层面的基础上,对大数据的数据采集、数据存储、常见计算模式和典型系统工具进行了分析介绍。本书同时对各种典型系统工具进行了讲解,包括大数据查询分析计算及典型工具(HBase、Hive)、批处理计算及典型工具(MapReduce、Spark)、流式计算及典型工具(Storm、Apex、Flink)、事件流及典型工具(Druid)等。本书提供了大量的实例和源代码供读
Excel商务数据分析与应用 电子书
本书以实践中商务数据分析工作的基本流程为主线,讲解相关人员在商务数据分析工作中所需掌握的基础知识,并通过“实践练习”环节提升读者应用所学知识来解决实际问题的能力。本书共7章。第1章概要介绍商务数据分析的基本情况,第2章~第6章讲解商务数据分析各个步骤的相关知识点及其应用,第7章要求读者综合应用前面各章内容完整地解决一个实践领域中的问题。本书每章都配备真实案例供读者学习,以增强读者的实战能力。本书配
大数据:精细化销售管理、数据分析与预测 电子书
本书适合营运部、财务部、商品企化部、销售管理部、销售及需要做产品分析和销售报表的相关工作人员阅读。
MySQL数据库技术与应用 电子书
MySQL是目前最流行的关系数据库管理系统之一。本书以MySQL5.6数据库管理系统为平台,以案例教学法为编写主线,介绍了数据库系统的基本概念和应用技术。本书以学生选课管理系统作为教学案例,以网上书店作为实训案例,采用“学习要点—内容示例—归纳总结—习题实训”的结构体系设计每章内容。最后一章以一个具体的项目案例开发设计过程,将数据库原理知识与实际数据库开发结合在一起。本书采用在线开放课程教学方式,
大数据导论 思维、技术与应用 电子书
本书以基本概念与实例相结合的方法,由浅入深、顺序渐进的对大数据思维、技术和应用做了全面系统的介绍。全书共12章,分为大数据基础篇、大数据存储篇、大数据处理篇、大数据挖掘篇和大数据应用篇。每个知识节点都配有与理论学习内容相结合的案例介绍和代码实例,并在每章后面都配有丰富的作业。