经典力学的数学方法(第2版 影印版)

经典力学的数学方法(第2版 影印版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

这是莫斯科大学理论力学的优秀教材,论述了振动理论、刚体运动和哈密顿形式体系等动力学中的所有基本问题,特别强调了边分原理和分析力学及成为量子力学理论基石的哈密顿形式体系。在附录中介绍了经典力学与数学、物理学及其它领域的联系。可供理论力学专业、数学力学专业的研究生及科技人员参考。

作者简介

V. I. Arnold(V. I. 阿诺德,)俄罗斯数学家(1937-2010),1974年菲尔兹奖得主,他的许多优秀作品都被翻译为英文,本书是其中的一部。

章节目录

Preface

Preface to the second edition

Part I NEWTONIAN MECHANICS

Chapter 1 Experimental facts

1. The principles of relativity and determinacy

2. The galilean group and Newton's equations

3. Examples of mechanical systems

Chapter 2 Investigation of the equations of motion

4. Systems with one degree of freedom

5. Systems with two degrees of freedom

6. Conservative force fields

7. Angular momentum

8. Investigation of motion in a central field

9. The motion of a point in three-space

10. Motions of a system ofn points

11. The method of similarity

Part II LAGRANGIAN MECHANICS

Chapter 3 Variational principles

12. Calculus of variations

13. Lagrange's equations

14. Legendre transformations

15. Hamilton's equations

16. Liouville's theorem

Chapter 4 Lagrangian mechanics on manifolds

17. Holonomic constraints

18. Differentiable manifolds

19. Lagrangian dynamical systems

20. E. Noether's theorem

21. D'Alembert's principle

Chapter 5 Oscillations

22. Linearization

23. Small oscillations

24. Behavior of characteristic frequencies

25. Parametric resonance

Chapter 6 Rigid bodies

26. Motion in a moving coordinate system

27. Inertial forces and the Coriolis force

28. Rigid bodies

29. Euler's equations. Poinsot's description of the motion

30. Lagrange's top

31. Sleeping tops and fast tops

Part III HAMILTONIAN MECHANICS

Chapter 7 Differential forms

32. Exterior forms

33. Exterior multiplication

34. Differential forms

35. Integration of differential forms

36. Exterior differentiation

Chapter 8 Symplectic manifolds

37. Symplectic structures on manifolds

38. Hamiltonian phase flows and their integral invariants

39. The Lie algebra of vector fields

40. The Lie algebra of hamiltonian functions

41. Symplectic geometry

42. Parametric resonance in systems with many degrees of freedom

43. A symplectic atlas

Chapter 9 Canonical formalism

44. The integral invariant of Poincare-Cartan

45. Applications of the integral invariant of Poincare-Cartan

46. Huygens' principle

47. The Hamilton-Jacobi method for integrating Hamilton's canonical equations

48. Generating functions

Chapter 10 Introduction to perturbation theory

49. Integrable systems

50. Action-angle variables

51. Averaging

52. Averaging of perturbations

Appendix 1

Riemannian curvature

Appendix 2

Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids

Appendix 3

Symplectic structures on algebraic manifolds

Appendix 4

Contact structures

Appendix 5

Dynamical systems with symmetries

Appendix 6

Normal forms of quadratic hamiltonians

Appendix 7

Normal forms of hamiltonian systems near stationary points and closed trajectories

Appendix 8

Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem

Appendix 9

Poincare's geometric theorem, its generalizations and applications

Appendix 10

Multiplicities of characteristic frequencies, and ellipsoids

depending on parameters

Appendix 11

Short wave asymptotics

Appendix 12

Lagrangian singularities

Appendix 13

The Korteweg-de Vries equation

Appendix 14

Poisson structures

Appendix 15

On elliptic coordinates

Appendix 16

Singularities of ray systems

Index

经典力学的数学方法(第2版 影印版)是2019年由世界图书出版公司出版,作者[俄]V.I.Arnold。

得书感谢您对《经典力学的数学方法(第2版 影印版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
风湿免疫性疾病的检验诊断(第2版) 电子书
面向临床和检验,以风湿免疫性疾病为主线,全面介绍实验室诊断方法和临床应用。
泌尿系统疾病的检验诊断(第2版) 电子书
以泌尿系统疾病为主线,全面地介绍实验室诊断方法和临床应用。
神经系统疾病的检验诊断(第2版) 电子书
以疾病为主线,全面地介绍实验室诊断方法和临床应用,使临床医师根据诊治需要,能方便地查阅检验诊断项目。
内分泌及代谢疾病的检验诊断(第2版) 电子书
力求以循证医学的角度审视检验项目对临床诊疗的必要性和有效性。
ECMO手册(第2版) 电子书
本书以临床技术、救治经验为中心,进一步展现ECMO临床实践中的问题。