数值最优化(第2版 影印版英文版)

数值最优化(第2版 影印版英文版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

  本书作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。

  本书提供连续优化中大多数有效方法的全面的新的论述。每一章从基本概念开始,逐步阐述当前可用的技术。

  本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。

章节目录

Contents

Preface

prefcetothe Second Edition

1 Introduction 1

Mathematical Formulation 2

Example:A Transportation Problem 4

Continuous versus Discrete Optimization 5

Constrained and Unconstrained Optimization 6

Global and Local Optimization 6

Stocbastic and Deterministic Optimization 7

Convexity 7

Optimization Algorithms 8

Notes and References 9

2 Fundamentals of Unconstrained Optimization 10

2.1 What ls a Solution? 12

Recognizing a Local Minimum 14

Nonsmooth Problems 17

2.2 Overview of A1gorithms 18

Two Strategies:Line Search and Trust Region 19

Search Directions for Line Search Methods 20

Models for Trust-Region Methods 25

Scaling 26

Exercises 27

3 Line Search Methods 30

3.1 Step Length 31

The Wolfe Conditions 33

The Goldstein Conditions 36

Sufficient Decrease and Backtracking 37

3.2 Convergence of Line Search Methods 37

3.3 Rate of Convergence 41

Convergence Rate of Steepest Descent 42

Newton's Method 44

Quasi-Newton Methods 46

3.4 Newton's Method with Hessian Modification 48

Eigenvalue Modification 49

Adding a Multiple of the ldentity 51

Modified Cholesky Factorization 52

Modified Symmetric Indefinite Factorization 54

3.5 Step-Length Selection Algorithms 56

lnterpolation 57

lnitial Step Length 59

A Line Search A1gorithm for the Wolfe Conditions 60

Notes and References 62

Exercises 63

4 Trust-Region Methods 66

Outline of the Trust-Region Approach 68

4.1 A1gorithms Based on the Cauchy Point 71

The Cauchy Point 71

lmpro时ng on the Cauchy Point 73

The Dogleg Method 73

Two-Dinlensional Subspace Mininlization 76

4.2 Global Convergence 77

Reduction Obtained by the Cauchy Point 77

Convergence to Stationary Points 79

4.3 lterative Solution of the Subproblem 83

The Hard Case 87

Proof of Theorem 4.1 89

Convergence of Algorithms Based on Nearly Exact Solutions 91

4.4 Local Convergence ofTrust-Region Newton Methods 92

4.5 0ther Enhancements 95

Scaling 95

Trust Regions in 0ther Norms 97

Notes and References 98

Exercises 98

5 Conjugate Gradient Methods 101

5.1 The linear Conjugate Gradient Method 102

Conjugate Direction Methods 102

Basic Properties of thee Conjugate Gradient Method 107

A Practical Form of the Conjugate Gradient Method 111

Rate of Convergence 112

Preconditioning 118

Practical Preconditioners 120

5.2 Nonlinear Conjugate Gradient Methods 121

The Fletcher-Reeves Method 121

The Polak-Ribière Method and Variants 122

Quadratic Termination and Restarts 124

Behavior of the Fletcher-Reeves Method 125

Global Convergence 127

Numerical Performance 131

Notes and Reference 132

Exercises 133

6 Quasi-Newton Methods 135

6.1 The BFGS Method 136

Properties ofthe BFGS Method 141

Implementation 142

6.2 The SR1 Method 144

Properties of SR1 Updating 147

6.3 The Broyden Class 149

6.4 Convergence Analysis 153

Global Convergence of the BFGS Method 153

Superlinear Convergence of the BFGS Method 156

Convergence Analysis of the SR1 Method 160

Notes and References 161

Exercises 162

7 Large-Scale Unconstrained optimization 164

7.1 lnexact Newton Methods 165

Local Convergence of Inexact Newton Methods 166

Line Search Newton-CG Method 168

Trust-Region Newton-CG Method 170

Preconditioning the Trust-Region Newton-CG Method 174

Trust-Region Newton-Lanczos Method 175

7.2 Limited-Memory Quasi-Newton Methods 176

Limited-Memory BFGS 177

Relationship with Conjugate Gradient Methods 180

General Lirnited:d-Memory Updatiug 181

Compact Representation of BFGS Updating 181

Unrolling the Update 184

7.3 Sparse Quasi-Newton Updates 185

7.4 Algorithms for Partially Separable Fnnctions 186

7.5 Perspectives and Sotrware 189

Notes and References 190

Exercises 191

8 Calculating Derivatives 193

8.1 Finite-Difference Derivative Approximations 194

Approximating the Gradient 195

Approximating a Sparse Jacobian 197

Approximatiug the Hessian 201

Approximatiug a Sparse Hessian 202

8.2 Automatic Differentiation 204

Au Example 205

The Forward Mode 206

The Reverse Mode 207

Vector Fnnctions and Partial Separablity 210

Calculating Jacobians ofVector Funlctions 212

Calculating Hessians:Forward Mode 213

Calculating Hessians:Reverse Mode 215

Current Lirnitations 216

Notess and References 217

Exercises 217

9 Derivatve-Free Optiimization 220

9.1 Finite Differences and Noise 221

9.2 Model-Based Methods 223

Interpolation aod Polyoomial Bases 226

Updating the Interpolation Set 227

A Method Based on Minimum-Change Updating 228

9.3 Coordinate and Pattern-Search Methods 229

Coordinate Search Method 230

Pattern-Search Methods 231

9.4 A Conjugate-Direction Method 234

9.5 Nelder-Mead Method 238

9.6 Implicit Filtering 240

Notes and References 242

Exercises 242

10

数值最优化(第2版 影印版英文版)是2019年由科学出版社出版,作者[美]乔治·劳斯特。

得书感谢您对《数值最优化(第2版 影印版英文版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
基于MATLAB的实用数值计算(修订本) 电子书
本书分两部分,第一部分紧扣数值计算介绍了MATLAB语言的基础知识:数值矩阵及其运算,字符串和符号矩阵,基本绘图和编程方法。第二部分介绍数值计算的基本内容:计算误差,代数方程及方程组的数值求解,插值法和数据拟合,数值积分和常微分方程初值问题数值解等。书中配有大量例题和适量的练习题,书末附有MATLAB-7的内容列表、习题参考答案及本书中使用的指令索引等。与传统数值计算教材不同,本书把MATLAB语
工科概率统计(英文版) 电子书
魏军强、郑宏文编著的《工科概率统计》的主要内容包括:概率论的基本概念、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、描述性统计、数理统计的基本概念、参数的点估计与区间估计、参数的假设检验等。本书偏重于工科各专业与概率统计思想、方法的联系,可作为工科、理科非数学专业及经济管理类等专业本科生和留学生的概率论与数理统计教材,同时也可供相关科技人员参考。
CAT分析大系:ANSYS Workbench 17.0数值模拟与实例精解 电子书
本书以ANSYSWorkbench17.0软件平台为基础进行编写,涵盖的分析范围领域较宽泛,主要内容包括DM几何建模与模型清理,网格划分,工程数据定义,Mechanical常用(前、后处理)设置,线性静力学,动力学(模态、谐响应、随机振动、谱分析、瞬态动力学、显示动力学和刚体动力学等),非线性问题(接触非线性、状态非线性和材料非线性),屈曲分析(非线性与线性),热分析(稳态、瞬态、相变和热结构耦合
数学建模实例与优化算法 电子书
本书共分9章内容:数学建模概述、用初等数学解决的问题、与利息有关的经济问题、运用微积分方法解决的问题、线性规划问题、网络优化问题、层次分析法应用实例、优化算法简介、其他应用实例。
OptiStruct及HyperStudy优化与工程应用 电子书
《OptiStruct及HyperStudy优化与工程应用》是在2019版HyperWorks软件基础上编写的OptiStruct和HyperStudy优化教程。全书首先深入讲解了拓扑优化、自由尺寸优化、形貌优化、尺寸优化、形状优化、自由形状优化、增材制造优化、复合材料优化,以及等效静态载荷法、热、疲劳及非线性优化等OptiStruct优化技术,然后详细介绍了HyperStudy相关的各种优化技术