腾讯大数据构建之道

腾讯大数据构建之道

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

本书阐述了腾讯大数据的核心体系,是一本内容翔实、丰富和系统化的大数据著作。

内容简介

本书详细阐述了腾讯大数据平台系统架构,以及多年来平台建设的思考与沉淀,涵盖腾讯大数据的起源、技术理念及发展历程、开源路线选择的思考以及三代大数据平台架构的技术演进,涉及数据实时采集平台、下一代分布式存储平台、分布式计算平台、资源调度平台、机器学习平台、数据内容挖掘、大数据平台的运营、大数据套件TBDS、一站式机器学习平台智能钛TI等核心技术内容。

大数据生态发展与演进需要各界数据人的共同努力,相信本书中详尽的大数据平台案例与建设思路可以给各位同行朋友带来很大的启发并提供借鉴。

本书适合大数据从业人员、大数据技术爱好者、相关专业院校学生阅读。

章节目录

版权信息

作者简介

彩插

本书编委会

前言

第1章 打造腾讯大数据平台

1.1 腾讯大数据的缘起

1.2 腾讯大数据的构建理念

1.3 腾讯大数据的总体架构

第2章 数据实时采集平台

2.1 接入层挑战

2.2 接入管理层TDManager

2.2.1 TDManager作用

2.2.2 TDManager系统架构

2.2.3 业务核心流程介绍

2.3 数据采集

2.3.1 概述

2.3.2 特点

2.3.3 改进优化

2.3.4 主要应用场景

2.4 数据总线

2.4.1 数据总线是什么

2.4.2 为什么需要数据总线

2.4.3 数据总线架构

2.4.4 技术特点

2.4.5 适用场景和不足

2.5 消息中间件

2.5.1 为什么使用消息中间件

2.5.2 TubeMQ系统概述

2.5.3 Hippo系统概述

2.6 数据分拣

2.6.1 用户接口

2.6.2 系统架构

2.6.3 负载分配

2.7 接入层展望

第3章 分布式存储平台

3.1 文件存储HDFS

3.1.1 HDFS基础

3.1.2 HDFS架构

3.1.3 HDFS读写流程

3.1.4 HDFS特性

3.1.5 HDFS概览

3.2 统一存储Ceph

3.2.1 Ceph基础

3.2.2 Ceph核心

3.2.3 块存储(RBD)

3.2.4 对象存储

3.2.5 文件存储

3.3 下一代大数据存储Ozone

3.3.1 Ozone概述

3.3.2 基本概念

3.3.3 Ozone的设计原则

3.3.4 技术构架

3.3.5 应用场景

3.4 KV存储HBase

3.4.1 HBase概述

3.4.2 HBase数据模型

3.4.3 HBase架构与原理

3.4.4 HBase在腾讯的实践

第4章 分布式计算平台

4.1 批处理MapReduce

4.1.1 MapReduce介绍

4.1.2 MapReduce举例

4.1.3 MapReduce工作原理

4.2 批处理Spark

4.2.1 背景

4.2.2 基本概念与架构

4.2.3 Spark开发最佳实践

4.3 批处理漂移计算SuperSQL

4.3.1 概述

4.3.2 元数据管理

4.3.3 跨源分布式查询处理

4.3.4 跨DC查询优化

4.4 流处理Flink

4.4.1 概述

4.4.2 腾讯Flink实践

4.4.3 编程模型

4.4.4 系统架构

4.5 SQL数据仓库Hive

4.5.1 Hive介绍

4.5.2 SQL执行架构

4.5.3 腾讯Hive实践

4.6 任务调度

4.6.1 统一调度与周边系统关系

4.6.2 统一调度架构设计

4.6.3 洛子与统一调度

4.6.4 模块划分

第5章 数据分析引擎

5.1 关系型OLAP:腾讯实时多维分析平台

5.1.1 背景和业务价值

5.1.2 技术架构与原理

5.1.3 应用案例

5.2 关系型OLAP:ClickHouse

5.2.1 概述

5.2.2 技术架构

5.2.3 系统调优

5.2.4 运维管理

5.3 多维OLAP:Kylin

5.3.1 Kylin概述

5.3.2 Kylin基本概念

5.3.3 Kylin技术架构

5.3.4 Cube优化

5.3.5 Kylin运维管理

5.4 多维OLAP:Druid

5.4.1 Druid概述

5.4.2 Druid原理与架构

5.4.3 Druid应用案例

第6章 资源调度平台

6.1 Yarn项目背景

6.1.1 Hadoop 1.0架构的问题

6.1.2 Yarn的基本架构

6.2 调度器性能优化

6.2.1 大集群的优点与挑战

6.2.2 如何找到性能瓶颈

6.2.3 优化思路

6.3 集群的高可用性

6.3.1 ResourceManager高可用性

6.3.2 NodeManager热重启

6.4 多资源维度弹性管理

6.4.1 CPU管理

6.4.2 内存管理

6.4.3 GPU管理

6.4.4 本地磁盘管理

第7章 数据治理体系

7.1 元数据

7.1.1 元数据介绍

7.1.2 元数据系统设计

7.1.3 元数据安全

7.1.4 元数据应用

7.2 数据资产管理

7.2.1 数据资产与数据资产管理

7.2.2 数据资产管理实践

7.3 大数据安全

7.3.1 大数据安全介绍

7.3.2 大数据安全体系

7.3.3 统一安全中心

第8章 机器学习平台

8.1 图智能平台

8.1.1 图存储

8.1.2 图计算

8.1.3 业务应用

8.2 Angel

8.2.1 Angel项目背景

8.2.2 Angel基础架构

8.2.3 Angel高性能

8.2.4 Angel稳定性建设

8.2.5 Angel编程接口

8.3 联邦学习

8.3.1 联邦学习概念

8.3.2 联邦学习关键技术

8.3.3 Angel PowerFL平台

8.3.4 联邦学习应用

第9章 数据内容挖掘

9.1 概览

9.2 广告内容挖掘

9.2.1 文本分类特征

9.2.2 文本主题特征

9.2.3 文本关键词特征

9.3 用户画像数据体系

9.4 用户画像构建方法

9.4.1 基础属性

9.4.2 用户兴趣

9.5 数据内容挖掘与推荐

9.6 数据内容挖掘与AI创作

9.6.1 机器写作业界现状

9.6.2 机器写作方法现状

9.6.3 个性化AI写作

第10章 大数据平台运营

10.1 大数据服务规划

10.1.1 IDC建设规划

10.1.2 网络架构设计

10.1.3 服务器选型

10.1.4 安全策略选择

10.2 大数据平台治理

10.2.1 租户划分策略

10.2.2 资源管理策略

10.2.3 分级服务机制

10.3 自动化运维体系构建

10.3.1 系统运维能力演进

10.3.2 系统运维工具平台

10.3.3 故障处理平台

10.3.4 大数据平台无感迁移

10.4 平台运营成本优化

10.4.1 降低资源成本

10.4.2 提高资源有效利用率

10.5 大数据运营分析与应用体系

第11章 大数据平台产品设计

11.1 TBDS大数据处理套件

11.1.1 产品背景和目标

11.1.2 TBDS大数据PaaS平台

11.2 Oceanus实时流式数据处理平台

11.2.1 Oceanus介绍

11.2.2 Oceanus架构

11.2.3 库表管理

11.2.4 应用管理

11.3 ideX数据分析与探索挖掘工具

11.3.1 五星级的SQL编辑器

11.3.2 强大的Jupyter Notebook

11.3.3 强大的GraphQL

11.4 智能钛TI机器学习平台

11.4.1 机器学习平台功能模块

11.4.2 智能钛的使用

11.4.3 数据管理

11.4.4 建模

11.4.5 模型服务

第12章 企业级容器云平台GaiaStack

12.1 GaiaStack产品背景和目标

12.1.1 企业使用容器云的意义

12.1.2 容器技术趋势

12.1.3 团队的容器技术发展概况

12.1.4 GaiaStack产品目标

12.2 GaiaStack架构和技术特点

12.2.1 GaiaStack架构

12.2.2 GaiaStack技术优势

12.3 GaiaStack核心技术

12.3.1 应用支持能力

12.3.2 资源管理能力

12.3.3 GaiaStack扩展能力

第13章 大数据应用服务

13.1 智能客服机器人

13.1.1 定位及价值

13.1.2 产品建设历程

13.1.3 整体架构介绍

13.1.4 技术方案和应用

13.1.5 未来挑战及展望

13.2 移动推送

13.2.1 TPNS产品能力

13.2.2 TPNS主要应用场景

13.2.3 推送技术方案

13.2.4 网络和安全方案

13.3 数据可视化产品小马BI

13.3.1 数据采集

13.3.2 BI可视化

13.3.3 开放生态

参考文献

腾讯大数据构建之道是2022年由机械工业出版社华章分社出版,作者陈鹏。

得书感谢您对《腾讯大数据构建之道》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
流量的逻辑:构建平台流量机制的数据策略与案例 电子书
本书通过10个第一现场的案例故事,揭秘平台流量机制的构建角度与构建过程,针对性地解决互联网数据从业者面临的棘手问题,包含触达用户、提升产品体验、优化内容生态等重要运营命题的思维方式和应用方法。全书分为3个部分,共17章。第1部分(第1~7章)为工具篇,详细介绍互联网数据分析师所应具备的基础思维方式和方法论,互联网产品的业务概念、核心问题、业务目标的衡量手段,以及数据采集规范、常用的量化研究和数据分
Python高手修炼之道:数据处理与机器学习实战 电子书
适读人群 :1.没有编程知识的新手 不同于一般的基础语法讲解教程,本书并未将Python 开发限定于某个集成开发工具(IDE)中,而是采用交互式编程的方式来强化读者对语言特性的理解,帮助新手读者真正理解Python 语言和Python 编程。2.从未接触过Python 语言,但了解一点编程知识的初学者 本书通过对基础知识高度的提炼和概括,以避免初学者陷入低级且冗长的细节知识点而心生懈怠;同时,本书为初学者规划了从初级到高级的编程技能提升路线图。3.具有一定基础的Python 程序员 本书可以作为案头工具书来使用。本书从基础语法、基本技能讲起,涵盖了科学计算、数据处理、机器学习等领域,示例代码涉及30 余个模块的使用。 构建从Python入门到数据分析到机器学习的路线图,入门有章可循; 1.讲解独到,常见盲点趣解析 作者基于多年的经验积累,善于总结概括初学Python过程中的误区。 2.内容全面,常用工具全涵盖 书中介绍的Python工具包覆盖Numpy、Matplotlib、Pandas、SciPy、Scikit-Learn,方便读者拓展实用技能、掌握工作利器。 3.拓展训练,重点知识有强化 语感训练100题、Python内置函数(类)手册、从新手到高手的100个模块,强化知识点的掌握。 4.代码完整,随时动手可复现 本书提供了完整、可验证的代码,方便读者动手练习并强化理解。
腾讯:一个科技帝国的崛起 电子书
全景展示腾讯成长,解读中国科技巨头崛起的秘密。
腾讯云TVP数字化转型洞见 电子书
国内数字化建设的全景图,为企业数字化建设提供全新视角。
江湖之道 电子书
本书旨在突破著作在研究上的局限,以商法学的知识体系为参照,从宏观上全面介绍并比较长江流域个各同区域的商事习惯法,尽可能发掘出适用于长江流域大部分地区的具有共同性的典型性商事习惯法。