图神经网络导论

图神经网络导论

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

1.清华大学刘知远力作;

2.图神经网络入门导引;

3.邱锡鹏等多位AI先锋学者推荐;

4.全彩印刷。

“图神经网络技术发展迅速,想快速学习、掌握这些技术有很多困难。这本书的特点是简明扼要、系统完整,是学习图神经网络的一本好教材。”

——张长水

清华大学自动化系教授、IEEE Fellow

“图神经网络是近年机器学习的研究热点,也在很多领域取得应用。这本书内容详尽,既包含对图神经网络基础的介绍,也有新的一些研究,同时还覆盖了部分应用,非常系统化,是一本非常值得推荐的书。”

——唐杰

清华大学教授、AMiner创始人

“图神经网络是目前学术界和工业界的研究热点之一。这本书全面、系统地介绍了图神经网络的基本概念、主要模型以及应用场景,内容清晰易懂,非常适合对图神经网络感兴趣的读者阅读。强烈推荐!”

——邱锡鹏

复旦大学计算机学院教授

内容简介

图神经网络(GNN)是基于深度学习的图数据处理方法,因其卓越的性能而受到广泛关注。本书全面介绍了GNN的基本概念、具体模型和实际应用。书中首先概述数学基础和神经网络以及图神经网络的基本概念,接着介绍不同种类的GNN,包括卷积图神经网络、循环图神经网络、图注意力网络、图残差网络,以及几个通用框架。此外,本书还介绍了GNN在结构化场景、非结构化场景和其他场景中的应用。读完本书,你将对GNN的最新成果和发展方向有较为透彻的认识。

作者简介

【作者简介】

刘知远

清华大学计算机科学与技术系副教授、博士生导师、智源人工智能研究院研究员,在自然语言处理、表示学习、知识图谱等人工智能研究领域享有盛誉,所开发的自然语言处理算法已成为该领域的代表方法。2018年入选《麻省理工科技评论》“35岁以下科技创新35人”。

周界

清华大学计算机科学与技术系硕士,曾在ACL、KDD等国际会议上发表论文,研究兴趣包括图神经网络和自然语言处理。

【译者简介】

李泺秋

浙江大学计算机科学硕士,研究兴趣主要为自然语言处理。

章节目录

第 1章 引论 1

1.1 设计动机 1

1.1.1 卷积神经网络 1

1.1.2 图嵌入 3

1.2 相关工作 3

第 2章 数学和图论基础 7

2.1 线性代数 7

2.1.1 基本概念 7

2.1.2 特征分解 10

2.1.3 奇异值分解 11

2.2 概率论 12

2.2.1 基本概念和公式 12

2.2.2 概率分布 14

2.3 图论 15

2.3.1 基本概念 16

2.3.2 图的代数表示 16

第3章 神经网络基础 19

3.1 神经元 19

3.2 后向传播 22

3.3 神经网络 24

第4章 基础图神经网络 27

4.1 概述 27

4.2 模型介绍 28

4.3 局限性 30

第5章 卷积图神经网络 33

5.1 基于谱分解的方法 33

5.1.1 Spectral Network 33

5.1.2 ChebNet 34

5.1.3 GCN 35

5.1.4 AGCN 36

5.2 基于空间结构的方法 37

5.2.1 Neural FP 37

5.2.2 PATCHY-SAN 38

5.2.3 DCNN 40

5.2.4 DGCN 40

5.2.5 LGCN 42

5.2.6 MoNet 44

5.2.7 GraphSAGE 45

第6章 循环图神经网络 47

6.1 GGNN 47

6.2 Tree-LSTM 49

6.3 Graph-LSTM 50

6.4 S-LSTM 51

第7章 图注意力网络 55

7.1 GAT 55

7.2 GaAN 57

第8章 图残差网络 59

8.1 Highway GCN 59

8.2 Jump Knowledge Network 60

8.3 DeepGCN 62

第9章 不同图类型的模型变体 65

9.1 有向图 65

9.2 异构图 66

9.3 带有边信息的图 68

9.4 动态图 70

9.5 多维图 72

第 10章 高级训练方法 75

10.1 采样 75

10.2 层级池化 78

10.3 数据增广 80

10.4 无监督训练 80

第 11章 通用框架 83

11.1 MPNN 83

11.2 NLNN 85

11.3 GN 87

第 12章 结构化场景应用 93

12.1 物理学 93

12.2 化学和生物学 95

12.2.1 分子指纹 95

12.2.2 化学反应预测 97

12.2.3 药物推荐 97

12.2.4 蛋白质和分子交互预测 98

12.3 知识图谱 99

12.3.1 知识图谱补全 99

12.3.2 归纳式知识图谱嵌入 100

12.3.3 知识图谱对齐 101

12.4 推荐系统 102

12.4.1 矩阵补全 103

12.4.2 社交推荐 104

第 13章 非结构化场景应用 105

13.1 图像领域 105

13.1.1 图像分类 105

13.1.2 视觉推理 108

13.1.3 语义分割 109

13.2 文本领域 110

13.2.1 文本分类 110

13.2.2 序列标注 111

13.2.3 神经机器翻译 112

13.2.4 信息抽取 113

13.2.5 事实验证 114

13.2.6 其他应用 116

第 14章 其他场景应用 117

14.1 生成模型 117

14.2 组合优化 119

第 15章 开放资源 121

15.1 数据集 121

15.2 代码实现 123

第 16章 总结 125

16.1 浅层结构 125

16.2 动态图 126

16.3 非结构化场景 126

16.4 可扩展性 126

参考文献 129

作者简介 148

图神经网络导论是2021年由人民邮电出版社出版,作者刘知远。

得书感谢您对《图神经网络导论》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
信息安全导论(在线实验+在线自测) 电子书
(1)具有科学合理的知识体系。本书按照由浅入深的顺序,逐渐引入相关技术与知识,实现技术讲解与训练合二为一,有助于“教、学、做一体化”教学方法的实施。(2)发挥企业的优势。本书将行业案例与基本的信息安全理论体系相融合来组织全书内容,为读者展示从技术视角出发的信息安全知识体系。(3)突出前沿性和实用性。随着信息技术的发展,信息安全领域也出现了很多新问题,如移动终端安全、物联网安全、云计算和大数据安全等
计算思维与计算机导论 电子书
本书以计算思维为主线,理论与实际接合,从计算思维的角度介绍计算机体系结构、软件硬件系统、问题求解、计算机网络、信息安全、数据库技术、办公软件的高级应用等内容。培养学生的计算思维能力、自主学习能力、创新能力,使得学生能够利用计算思维的方法解决实际问题,进行创新创业的活动。配有针对性强的实验,可操作性强,习题与教材结合紧密,文字通俗易懂、可读性强。
图数据库实战 电子书
图数据库入门教程书籍,采用Gremlin语言,完整展示图应用程序的构建过程,从入门到实践学习图数据库。
大数据导论 思维、技术与应用 电子书
本书以基本概念与实例相结合的方法,由浅入深、顺序渐进的对大数据思维、技术和应用做了全面系统的介绍。全书共12章,分为大数据基础篇、大数据存储篇、大数据处理篇、大数据挖掘篇和大数据应用篇。每个知识节点都配有与理论学习内容相结合的案例介绍和代码实例,并在每章后面都配有丰富的作业。
云计算导论:概念 架构与应用 电子书
本书全面介绍云计算的概念、框架与应用。全书共8章,主要内容包括云计算的基本概念、云计算平台体验、IaaS服务模式、PaaS服务模式、SaaS服务模式、桌面云、云存储、典型的云计算平台。本书内容实用,实验丰富,将实验内容融合在课程内容中,使理论紧密联系实际。本书主要是面向大学本专科教学的云计算技术概论性入门教材,通过学习本书,可以了解今后需要学习哪些课程和技术来系统掌握云计算工作原理和开发基于云计算