贝叶斯数据分析(第3版)

贝叶斯数据分析(第3版)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

  This book is intended to have three roles and to serve three associated audiences: anintroductory text on Bayesian inference starting from first principles, a graduate text oneffective current approaches to Bayesian modeling and computation in statistics and relatedfields, and a handbook of Bayesian methods in applied statistics for general users of andresearchers in applied statistics. Although introductory in its early sections, the book isdefinitely not elementary in the sense of a first text in statistics. The mathematics usedin our book is basic probability and statistics, elementary calculus, and linear algebra. Areview of probability notation is given in Chapter 1 along with a more detailed list of topicsassumed to have been studied. The practical orientation of the book means that the reader'sprevious experience in probability, statistics, and linear algebra should ideally have includedstrong computational components.

  To write an introductory text alone would leave many readers with only a taste of theconceptual elements but no guidance for venturing into genuine practical applications, be-yond those where Bayesian methods agree essentially with standard non-Bayesian analyses.On the other hand, we feel it would be a mistake to present the advanced methods with-out first introducing the basic concepts from our data-analytic perspective. Furthermore,due to the nature of applied statistics, a text on current Bayesian methodology would beincomplete without a variety of worked examples drawn from real applications. To avoidcluttering the main narrative, there are bibliographic notes at the end of each chapter andreferences at the end of the book.

作者简介

Andrew Gelman是哥伦比亚大学统计学院的教授,应用统计学中心主任。他曾获得美国统计协会颁发的杰出统计应用奖、《美国政治科学评论》发表的最佳文章奖,以及统计学会主席理事会颁发的40岁以下人士杰出贡献奖。他的著作包括贝叶斯数据分析(与约翰·卡林、哈尔·斯特恩、大卫·邓森、阿基·维塔里和唐·鲁宾合著)、教学统计学等。

章节目录

Preface

Part I: Fundamentals of Bayesian Inference

1Probability and inference

I.IThe three steps of Bayesian data analysis

1.2General notation for statistical inference

1.3Bayesian inference

1.4Discrete examples: genetics and spell checking

1.5Probability as a measure of uncertainty

1.6Example: probabilities from football point spreads

1.7Example: calibration for record linkage

1.8Some useful results from probability theory

1.9Computation and software

I.I0 Bayesian inference in applied statistics

i.Ii Bibliographic note

1.12 Exercises

2Single-parameter models

2.1Estimating a probability from binomial data

2.2Posterior as compromise between data and prior information

2.3Summarizing posterior inference

2.4Informative prior distributions

2.5Normal distribution with known variance

2.6Other standard single-parameter models

2.7Example: informative prior distribution for cancer rates

2.8Noninformative prior distributions

2.9Weakly informative prior distributions

2.10 Bibliographic note

2.11 Exercises

3Introduction to multiparameter models

3.1Averaging over 'nuisance parameters'

3.2Normal data with a noninformative prior distribution

3.3Normal data with a conjugate prior distribution

3.4Multinomial model for categorical data

3.5Multivariate normal model with known variance

3.6Multivariate normal with unknown mean and variance

3.7Example: analysis of a bioassay experiment

3.8Summary of elementary modeling and computation

3.9Bibliographic note

3.10 Exercises

4Asymptotics and connections to non-Bayesian approaches

4.1Normal approximations to the posterior distribution

4.2Large-sample theory

4.3Counterexamples to the theorems

4.4Frequency evaluations of Bayesian inferences

4.5Bayesian interpretations of other statistical methods

4.6Bibliographic note

4.7Exercises

5Hierarchical models

5.1 Constructing a parameterized prior distribution

5.2Exchangeability and hierarchical models

5.3Bayesian analysis of conjugate hierarchical models

5.4Normal model with exchangeable parameters

5.5Example: parallel experiments in eight schools

5.6Hierarchical modeling applied to a meta-analysis

5.7Weakly informative priors for variance parameters

5.8Bibliographic note

5.9Exercises

Part II: Fundamentals of Bayesian Data Analysis

6Model checking

6.1The place of model checking in applied Bayesian statistics

6.2Do the inferences from the model make sense?

6.3Posterior predictive checking

6.4Graphical posterior predictive checks

6.5Model checking for the educational testing example

6.6Bibliographic note

6.7Exercises

?Evaluating, comparing, and expanding models

7.1Measures of predictive accuracy

7.2Information criteria and cross-validation

7.3Model comparison based on predictive performance

7.4Model comparison using Bayes factors

7.5Continuous model expansion

7.6Implicit assumptions and model expansion: an example

7.7Bibliographic note

7.8Exercises

8Modeling accounting for data collection

8.1Bayesian inference requires a model for data collection

8.2Data-collection models and ignorability

8.3Sample surveys

8.4Designed experiments

8.5Sensitivity and the role of randomization

8.6Observational studies

8.7Censoring and truncation

8.8Discussion

8.9Bibliographic note

8.10 Exercises

9Decision analysis

9.1 Bayesian decision theory in different contexts

9.2Using regression predictions: survey incentives

9.3Multistage decision making: medical screening

9.4Hierarchical decision analysis for home radon

9.5Personal vs. institutional decision analysis

9.6Bibliographic note

9.7Exercises

Part III: Advanced Computation

10 Introduction to Bayesian computation

10.1 Numerical integration

10.2 Distributional approximations

10.3 Direct simulation and rejection sampling

10.4 Importance sampling

10.5 How many simulation draws are needed?

10.6 Computing environments

10.7 Debugging Bayesian computing

10.8 Bibliographic note

10.9 Exercises

11 Basics of Markov chain simulation

11.1 Gibbs sampler

11.2 Metropolis and Metropolis-Hastings algorithms

11.3 Using Gibbs and Metropolis as building blocks

11.4 Inference and assessing convergence

11.5 Effective number of simulation draws

11.6 Example: hierarchical normal model

11.7 Bibliographic note

11.8 Exercises

12 Computationally efficient Markov chain simulation

12.1 Efficient Gibbs samplers

12.2 Efficient Metropolis jumping rules

12.3 Further extensions to Gibbs and Metropolis

12.4 Hamiltonian Monte Carlo

12.5 Hamiltonian Monte Carlo for a hierarchical model

12.6 Stan: developing a computing environment

12.7 Bibliographic note

12.8 Exercises

13 Modal and distributional approximations

13.1 Finding posterior modes

13.2 Boundary-avoiding priors for modal summaries

13.3 Normal and related mixture approximations

13.4 Finding marginal posterior modes using EM

13.5 Conditional and marginal posterior approximations

13.6 Example: hierarchical normal model (continued)

13.7 Variational inference

13.8 Expectation propagation

13.9 Other approximations

13.10 Unknown normalizing factors

13.11 Bibliographic note

13.12 Exercises

Part IV: Regression Models

14 Introduction to regression models

14.1 Conditional modeling

14.2 Bayesian analysis of classical regression

14.3 Regression for causal inference: incumbency and voting

14.4 Goals of regression analysis

14.5 Assembling the matrix of explanatory variables

14.6 Regularization and dimension reduction

14.7 Unequal variances and correlations

14.8 Including numerical prior information

14.9 Bibliographic note

14.10 Exercises

15 Hierarchical linear models

15.1 Regression coefficients exchangeable in batches

15.2 Example: forecasting U.S. presidential elections

15.3 Interpreting a normal prior distribution as extra data

15.4 Varying intercepts and slopes

15.5 Computation: batching and transformation

15.6 Analysis of variance and the batching of coefficients

15.7 Hierarchical models for batches of variance components

15.8 Bibliographic note

15.9 Exercises

16 Generalized linear models

16.1 Standard generalized linear model likelihoods

16.2 Working with generalized linear models

16.3 Weakly informative priors for logistic regression

16.4 Overdispersed Poisson regression for police stops

16.5 State-level opinons from national polls

16.6 Models for multivariate and multinomial responses

16.7 Loglinear models for multivariate discrete data

16.8 Bibliographic note

16.9 Exercises

17 Models for robust inference

17.1 Aspects of robustness

17.2 Overdispersed versions of standard models

17.3 Posterior inference and computation

17.4 Robust inference for the eight schools

17.5 Robust regression using t-distributed errors

17.6 Bibliographic note

17.7 Exercises

18 Models for missing data

18.1 Notation

18.2 Multiple imputation

18.3 Missing data in the multivariate normal and t models

18.4 Example: multiple imputation for a series of polls

18.5 Missing values with counted data

18.6 Example: an opinion poll in Slovenia

18.7 Bibliographic note

18.8 Exercises

Part V: Nonlinear and Nonparametric Models

19 Parametric nonlinear models

19.1 Example: serial dilution assay

19.2 Example: population toxicokinetics

19.3 Bibliographic note

19.4 Exercises

20 Basis function models

20.1 Splines and weighted sums of basis functions

20.2 Basis selection and shrinkage of coefficients

20.3 Non-normal models and regression surfaces

20.4 Bibliographic note

20.5 Exercises

21 Gaussian process models

21.1 Gaussian process regression

21.2 Example: birthdays and birthdates

21.3 Latent Gaussian process models

21.4 Functional data analysis

21.5 Density estimation and regression

21.6 Bibliographic note

21.7 Exercises

22 Finite mixture models

22.1 Setting up and interpreting mixture models

22.2 Example: reaction times and schizophrenia

22.3 Label switching and posterior computation

22.4 Unspecified number of mixture components

22.5 Mixture models for classification and regression

22.6 Bibliographic note

22.7 Exercises

23 Dirichlet process models

23.1 Bayesian histograms

23.2 Dirichlet process prior distributions

23.3 Dirichlet process mixtures

23.4 Beyond density estimation

23.5 Hierarchical dependence

23.6 Density regression

23.7 Bibliographic note

23.8 Exercises

Appendixes

A Standard probability distributions

A.1Continuous distributions

A.2Discrete distributions

A.3Bibliographic note

B Outline of proofs of limit theorems

B.1Bibliographic note

C Computation in R and Stan

C.1Getting started with R and Stan

C.2Fitting a hierarchical model in Stan

C.3Direct simulation, Gibbs, and Metropolis in R

C.4Programming Hamiltonian Monte Carlo in R

C.5Further comments on computation

C.6Bibliographic note

References

Author Index

Subject Index

贝叶斯数据分析(第3版)是2020年由世界图书出版公司出版,作者[美]安德鲁·格尔曼。

得书感谢您对《贝叶斯数据分析(第3版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
简明临床血气分析(第3版) 电子书
对与临床攸关的血气分析基础理论作了重点阐述。
数值分析简明教程(第2版) 电子书
本书共7章,具体包括:绪论、非线性方程的求根方法、线性方程组的解法、求矩阵特征值和特征向量的方法、插值与拟合方法、数值积分与数值微分方法、常微分方程初值问题数值解法。本书可以作为非数学专业理工科大学生和研究生学习数值分析课程的教材,也可以供相关科研人员和对数值分析感兴趣的读者参考。
数据结构(C语言版)(第2版) 电子书
适读人群 :普通高校电子信息大类本科生学习、考研,同时也适合零售和培训。   采用“案例驱动”的编写模式。书中结合实际应用,将各章按照“案例引入——数据结构及其操作——案例分析与实现”的案例驱动思路来展开。每章使用一个有趣的“问题案例”开头,由该案例逐步引入新的数据结构,然后给出该数据结构的存储表示及各种基本操作的实现,之后进一步分析此案例,最终利用该数据结构来实现此案例。   算法讲解更加细致。新版教材中对每个算法思想进行详细阐述,将用文字描述的算法步骤与用类C语言表述的算法描述一一对应。   优化教材内容。参考计算机专业全新的全国统考考研大纲,增加了大纲近两年新增的考点内容,如分块查找、外部排序等,有助于考研学生复习备考使用。
地球科学中的大数据分析与挖掘算法手册 电子书
本书以数据分析与挖掘思想为主线,深入剖析关联、分类、回归、聚类、顺序模式挖掘、深度学习以及异常检测等算法的原理、实现、相似算法、改进思路以及地学案例,具有很强的系统性、完整性以及落地性,可以作为各行业特别是地球科学领域中希望驾驭大数据并发掘其价值的科研人员和工程人员的参考书,读者既可以通过本书系统掌握大数据分析挖掘的思想方法,也可以将其作为算法工具书查阅。
对话大数据:政府/工业/金融/医疗/人才行业创新与应用案例分析 电子书
26位在大数据相关行业享有盛誉的知名企业家和权威学者分享关于大数据创新与应用的宝贵观点。