Python Crash Course

Python Crash Course:AHands-On,Project-BasedIntroductiontoProgramming

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

内容简介

Python Crash Course is a fast-paced, thorough introduction to Python that will have you writing programs, solving problems, and making things that work in no time.

In the first half of the book, you’ll learn about basic programming concepts, such as lists, dictionaries, classes, and loops, and practice writing clean and readable code with exercises for each topic. You’ll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you’ll put your new knowledge into practice with three substantial projects: a Space Invaders–inspired arcade game, data visualizations with Python’s super-handy libraries, and a simple web app you can deploy online.

As you work through Python Crash Course you’ll learn how to:

–Use powerful Python libraries and tools, including matplotlib, NumPy, and Pygal

–Make 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progresses

–Work with data to generate interactive visualizations

–Create and customize Web apps and deploy them safely online

–Deal with mistakes and errors so you can solve your own programming problems

If you’ve been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code!

Uses Python 2 and 3

Python Crash Course是2015年由NoStarchPress出版,作者EricMatthes。

得书感谢您对《Python Crash Course》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
Python爬虫开发 从入门到实战(微课版) 电子书
基于Python 3.X讲解,从入门到实战,全面讲解Python爬虫技术。全书重点难点附带微课讲解,书网融合互动学习。
Python编程从入门到精通 电子书
带你由浅入深地详细了解Python语言开发技术。
Python编程轻松进阶 电子书
阅读本书,理解代码底层逻辑,像职业程序员一样使用Python。
Python图像处理实战 电子书
本书先介绍经典的图像处理技术,然后探索图像处理算法的演变历程,始终紧扣图像处理以及计算机视觉与深度学习方面的最新进展。全书共12章,涵盖图像处理入门基础知识、应用导数方法实现图像增强、形态学图像处理、图像特征提取与描述符、图像分割,以及图像处理中的经典机器学习方法等内容。
用Python实现深度学习框架 电子书
本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题