Python与神经网络实战

Python与神经网络实战

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

本书全面介绍神经网络技术,理论实践并重,适合初学者与从业者。

内容简介

人工智能已成发展趋势,而深度学习则是其中最有用的工具之一。虽然科技发展速度迅猛,现在实用技术更新换代的频率已经迅速到以周来计算,但是其背后最为基础的知识却是共通的。

本书较为全面地介绍了神经网络的诸多基础与进阶的技术,同时还介绍了如何利用神经网络来解决真实世界中的现实任务。本书各章的内容不仅包括经典的传统机器学习算法与神经网络的方方面面,还对它们进行了对比与创新。

本书兼顾了理论与实践,不仅从公式上推导出神经网络的各种性质,也从实验上对它们进行了验证,比较适合初学者进行学习。同时,本书所给出的框架更能直接、简单、快速地应用在实际任务中,适合相关从业人员使用。

作者简介

编著者何宇健,毕业于北京大学数学系,有多年Python开发经验,曾用Python开发过多款有意思的软件。对机器学习、神经网络、贝叶斯算法有深入研究。

章节目录

版权信息

关于作者

前言

第1章 绪论

1.1 机器学习简介

1.1.1 什么是机器学习

1.1.2 机器学习常用术语

1.2 Python简介

1.2.1 Python的优势

1.2.2 scikit-learn和TensorFlow

1.3 前期准备

1.3.1 训练、交叉验证与测试

1.3.2 简易数据预处理

1.4 本章小结

第2章 经典传统机器学习算法简介

2.1 朴素贝叶斯

2.1.1 条件独立性假设

2.1.2 贝叶斯思维

2.1.3 模型算法

2.1.4 实例演示

2.1.5* 参数估计

2.1.6* 朴素贝叶斯的改进

2.2 决策树

2.2.1 决策的方法

2.2.2 决策树的生成

2.2.3 决策树的剪枝

2.2.4 实例演示

2.2.5* 决策树的三大算法

2.2.6* 数据集的划分

2.2.7* 决策树与回归

2.3 支持向量机

2.3.1 分离超平面与几何间隔

2.3.2* 感知机与SVM的原始形式

2.3.3 梯度下降法

2.3.4* 核技巧

2.3.5 实例演示

2.4 Logistic回归

2.5 本章小结

第3章 神经网络入门

3.1 神经网络的结构

3.2 前向传导算法

3.2.1 算法概述

3.2.2 算法内涵

3.2.3 激活函数

3.2.4 损失函数

3.3* 反向传播算法

3.3.1 算法概述

3.3.2 损失函数的选择

3.4 参数的更新

3.4.1 Vanilla Update

3.4.2 Momentum Update

3.4.3 Nesterov Momentum Update

3.4.4 AdaGrad

3.4.5 RMSProp

3.4.6 Adam

3.5 TensorFlow模型的基本框架

3.5.1 TensorFlow的组成单元与基本思想

3.5.2 TensorFlow模型的基本元素

3.5.3 TensorFlow元素的整合方法

3.5.4 TensorFlow模型的save & load

3.6 朴素神经网络的实现与评估

3.7 本章小结

第4章 从传统算法走向神经网络

4.1 朴素贝叶斯的线性形式

4.2 决策树生成算法的本质

4.2.1 第1隐藏层→决策超平面

4.2.2 第2隐藏层→决策路径

4.2.3 输出层→叶节点

4.2.4 具体实现

4.3 模型转换的实际意义

4.3.1 利用Softmax来赋予概率意义

4.3.2 利用Tanh+Softmax来“软化”模型

4.3.3 通过微调来缓解“条件独立性假设”

4.3.4 通过微调来丰富超平面的选择

4.3.5 模型逆转换的可能性

4.4 模型转换的局限性

4.5 本章小结

第5章 神经网络进阶

5.1 层结构内部的额外工作

5.1.1 Dropout

5.1.2 Batch Normalization

5.1.3 具体实现

5.2 “浅”与“深”的结合

5.2.1 离散型特征的处理方式

5.2.2 Wide and Deep模型概述

5.2.3 Wide and Deep的具体实现

5.2.4 WnD的重要思想与优缺点

5.3 神经网络中的“决策树”

5.3.1 DNDF结构概述

5.3.2* DNDF的具体实现

5.3.3 DNDF的应用场景

5.3.4* DNDF的结构内涵

5.4 神经网络中的剪枝

5.4.1 Surgery算法概述

5.4.2 Surgery算法改进

5.4.3 软剪枝的具体实现

5.4.4* 软剪枝的算法内涵

5.5 AdvancedNN的结构设计

5.5.1 AdvancedNN的实现补足

5.5.2 WnD与DNDF

5.5.3 DNDF与剪枝

5.5.4 剪枝与Dropout

5.5.5 没有免费的午餐

5.6 AdvancedNN的实际性能

5.7 本章小结

第6章 半自动化机器学习框架

6.1 数据的准备

6.1.1 数据预处理的流程

6.1.2 数据准备的流程

6.2 数据的转换

6.2.1 数据的数值化

6.2.2 冗余特征的去除

6.2.3 缺失值处理

6.2.4 连续型特征的数据预处理

6.2.5 特殊类型数据的处理

6.3 AutoBase的实现补足

6.4 AutoMeta的实现

6.5 训练过程的监控

6.5.1 监控训练过程的原理

6.5.2 监控训练的实现思路

6.5.3 监控训练的具体代码

6.6 本章小结

第7章 工程化机器学习框架

7.1 输出信息的管理

7.2 多次实验的管理

7.2.1 多次实验的框架

7.2.2 多次实验的初始化

7.2.3 多次实验中的数据划分

7.2.4 多次实验中的模型评估

7.2.5 多次实验的收尾工作

7.3 参数搜索的管理

7.3.1 参数搜索的框架

7.3.2* 随机搜索与网格搜索

7.3.3 参数的选取

7.3.4 参数搜索的收尾工作

7.3.5 具体的搜索方案

7.4 DistAdvanced的性能

7.5 本章小结

附录A SVM的TensorFlow实现

附录B numba的基本应用

附录C 装饰器的基本应用

附录D 可视化

附录E 模型的评估指标

附录F 实现补足

Python与神经网络实战是2018年由电子工业出版社出版,作者何宇健 编著。

得书感谢您对《Python与神经网络实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

购买这本书

你可能喜欢
Python机器学习开发实战 电子书
Python机器学习入门,以实战为重点,配有大量代码和案例,简单、快速、易学。
Python游戏设计案例实战 电子书
本书以Python3.5为编程环境,从基本的程序设计思想入手,逐步展开Python语言教学,是一本面向广大编程学习者的程序设计类教材。基础篇主要讲解Python的基础语法知识、控制语句、函数、文件、面向对象编程基础、Tkinter图形界面设计、网络编程和多线程、Python数据库应用等内容,并以小游戏案例作为各章的阶段性任务。实战篇和提高篇综合应用前面章节中介绍的技术,重现各个经典游戏的开发过程。
Python计算机视觉与深度学习实战 电子书
一本书入门计算机视觉,将深度学习理论融入视觉识别案例,搭建理论与实践的桥梁。
Python核心技术实战详解 电子书
1.内容讲解深入。 本书对Python的核心知识进行了深入剖析,循序渐进地讲解了核心功能模块的开发技术,帮助读者快速步入Python开发高手之列。 2.提供更为广泛的解决方案。 本书深入讲解了10个不同的主题模块,每一个主题涵盖了特定应用开发领域。在书中不仅给出了案例讲解,还包含了更多的拓展知识,能够帮助读者使用Python 开发各种类型的应用程序。 3.通过网站论坛形成互帮互学的朋友圈。 为了方便给读者答疑,特提供了网站论坛等支持,并且随时在线与读者互动,让大家在互学互帮中形成一个良好的学习编程的氛围。
Python Django开发实战(视频讲解版) 电子书
本书基于Django2.0,较为全面地介绍了Django应用的开发过程、Django核心模块的实现原理以及部署应用的相关技巧。全书共14章,第1章到第3章对Django框架以及开发环境配置、项目框架搭建进行了介绍;第4章到第13章使用Django内置的核心模块完成了应用的开发,并对各个模块的实现原理进行了分析,包括ORM实现原理、模板系统实现原理、路由系统实现原理、信号工作原理等;第14章介绍了部