微积分和数学分析引论(第二卷)

微积分和数学分析引论(第二卷)

查阅电子书
手机扫码
  • 微信扫一扫

    关注微信公众号

因版权原因待上架

编辑推荐

高等学校理工科师生与工程技术人员

内容简介

本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,卷为单变量情形,第二卷为多变量情形。

  第二卷中译本分为两册出版.本书是第二卷分册,包括前三章.章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基本概念.原书有练习解答,分别编入各分册.

  译者(按内容顺序):邵土敏、周建莹、张锦炎(章)、刘婉如(第二章)、林建详、张顺燕、朱德威(第三章)、林源渠(解答)。

  读者对象为高等学校理工科师生与工程技术人员。

作者简介

R·柯朗(Richard Courant)是20世纪杰出的数学家,哥廷根学派重要成员。他生前是纽约大学数学系和数学科学研究院的主任,该研究院后被重命名为柯朗数学科学研究院。他写的书《数学物理方程》为每一个物理学家所熟知,而他的《微积分学》已被认为是近代写得最好的该学科的代表作。

章节目录

第二卷 第一分册

第一章 多元函数及其导数

1.1平面和空间的点和点集

1.2几个自变量的函数

1.3连续性

1.4函数的偏导数

1.5函数的全微分及其几何意义

1.6函数的函数(复合函数)与新自变量的引入

1.7多元函数的中值定理与泰勒定理

1.8依赖于参量的函数的积分

1.9微分与线积分

1.10线性微分型的可积性的基本定理

附录

A.1多维空间的聚点原理及其应用

A.2连续函数的基本性质

A.3点集论的基本概念

A.4齐次函数

第二章 向量、矩阵与线性变换

2.1向量的运算

2.2矩阵与线性变换

2.3行列式

2.4行列式的几何解释

2.5分析中的向量概念

第三章 微分学的发展和应用

3.1隐函数

3.2用隐函数形式表出的曲线与曲面

3.3函数组、变换与映射

3.4应用

3.5曲线族,曲面族,以及它们的包络

3.6交错微分型

3.7最大与最小

附录

A.1极值的充分条件

练习A.1

A.2临界点的个数与向量场的指数

练习A.2

A3平面曲线的奇点

练习A.3

A.4曲面的奇点

练习A.4

A.5流体运动的欧拉表示法与拉格朗日表示法之间的联系

练习A.5

A.6闭曲线的切线表示法与周长不等式

练习A.6

解答

第二卷 第二分册

微积分和数学分析引论(第二卷)是2018年由科学出版社出版,作者[美]R·柯朗。

得书感谢您对《微积分和数学分析引论(第二卷)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。