类似推荐
编辑推荐
结合机器学习算法,进行信用评分卡模型的构建,手把手带你零门槛学习金融领域的风险控制。
内容简介
本书采用Python语言进行代码实战。
Python在各行各业的应用越来越普及,从云端到客户端,再到物联网终端,Python应用无处不在。更为重要的是,Python语言是人工智能的首选编程语言,本书聚焦的智能风控领域,正是人工智能对金融数据的应用场景,对此,Python具有无可比拟的优势。
关于Python语言实践和人工智能算法理论与实践的书籍颇为丰富,而结合信贷领域场景的算法应用类图书却比较稀缺,本书的出版将会改变这一现状。本书的核心内容包括算法理论与Python代码实践,旨在在构建评分卡的全流程内,先进行算法理论讲解,然后再进行代码实践,全面提升读者构建评分卡的理论造诣和工程能力。
章节目录
版权信息
前言
第1篇 智能风控背景
第1章 金融科技介绍
1.1 金融科技的前世今生
1.2 金融科技正深刻地改变和塑造着金融业态
1.3 新兴科技不断强化金融科技的应用能力
1.4 金融风险控制面临着前所未有的挑战
1.5 智能风控和评分卡
1.6 评分卡模型的开发流程
第2章 机器学习介绍
2.1 机器学习的概念
2.2 机器学习的分类
2.3 机器学习与人工智能的关系
2.4 机器学习与数学的关系
2.5 机器学习与深度学习
第3章 评分卡模型介绍
3.1 申请评分卡
3.2 行为评分卡
3.3 催收评分卡
3.4 反欺诈模型
第2篇 评分卡理论与实战基础
第4章 数据清洗与预处理
4.1 数据集成
4.2 数据清洗
4.3 探索性数据分析
4.4 Python代码实践
第5章 变量编码方法
5.1 无监督编码
5.2 有监督编码
5.3 Python代码实践
第6章 变量分箱方法
6.1 变量分箱流程
6.2 最优Chi-merge卡方分箱方法
6.3 Best-KS分箱方法
6.4 最优IV分箱方法
6.5 基于树的最优分箱方法
6.6 Python代码实践
第7章 变量选择
7.1 过滤法变量选择
7.2 包装法变量选择
7.3 嵌入法变量选择
7.4 Python代码实践
第8章 Logistic回归模型
8.1 Logistic回归模型原理
8.2 过拟合与欠拟合
8.3 Python代码实践
第9章 模型的评估指标
9.1 正负样本的选择
9.2 标准评估指标
9.3 概率密度评估指标
9.4 概率分布评估指标
9.5 Python代码实践
第10章 评分卡分数转化
10.1 由概率到分数的转换
10.2 变量的分值计算
10.3 评分卡性能评估
10.4 Python代码实践
第11章 模型在线监控
11.1 稳定性监控
11.2 单调性监控
11.3 性能监控指标
11.4 Python代码实践
第3篇 评分卡理论与实战进阶
第12章 样本不均衡处理
12.1 数据层下采样样本不均衡的处理方法
12.2 数据层上采样样本不均衡的处理方法
12.3 算法层样本不均衡的处理方法
12.4 模型评估层样本不均衡的处理方法
12.5 Python代码实践
第13章 特征工程进阶
13.1 数据层特征工程
13.2 算法层特征工程
13.3 Python代码实践
第14章 决策树模型
14.1 决策树模型的原理
14.2 决策树学习
14.3 决策树与过拟合
14.4 Python代码实践
第15章 神经网络模型
15.1 神经元模型
15.2 神经网络的网络结构
15.3 神经网络的学习策略
15.4 Python代码实践
第16章 支持向量机模型
16.1 感知器模型
16.2 线性可分支持向量机
16.3 线性支持向量机
16.4 非线性支持向量机
16.5 感知器相关模型比较
16.6 Python代码实践
第17章 集成学习
17.1 Bagging与Boosting对比
17.2 Random Forest模型原理
17.3 Adaboost模型原理
17.4 GBDT模型原理
17.5 Xgboost模型原理
17.6 Python代码实践
第18章 模型融合
18.1 Blending方法原理
18.2 Stacking方法原理
18.3 Python代码实践
第4篇 Lending Club数据集实战
第19章 完整的模型开发实现
19.1 数据源介绍
19.2 数据的获取与预处理
19.3 特征工程
19.4 模型构建与评估
19.5 评分卡生成
附录A 主要符号表
附录B 开发环境简介
参考文献
Python金融大数据风控建模实战:基于机器学习是2020年由机械工业出版社华章分社出版,作者王青天。
得书感谢您对《Python金融大数据风控建模实战:基于机器学习》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。