动手学深度学习(PyTorch版) 电子书

动手学深度学习(PyTorch版)

编辑推荐

·深度学习领域重磅作品《动手学深度学习》重磅推出PyTorch版本;·李沐、阿斯顿·张等大咖作者强强联合,精心编撰;·全球400多所大学采用的教科书,提供视频课程、教学PPT、习题,方便教师授课与学生自学;·能运行、可讨论的深度学习入门书,可在线运行源码并与作译者实时讨论。

内容简介

本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。


    本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络——多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。


  本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描述的线性代数、微分和概率等基础知识。


章节目录

展开全部

动手学深度学习(PyTorch版)是1970年由人民邮电出版社出版,作者阿斯顿·张(Aston Zhang),李沐(Mu Li),等。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《动手学深度学习(PyTorch版)》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
PyTorch深度学习实战 电子书
1.PyTorch核心开发者教你使用PyTorch创建神经网络和深度学习系统的实用指南。2.详细讲解整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及对结果进行可视化。3.PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:a.全面掌握PyTorch相关的API的使用方法以及系统掌握深度学习的理论和方法;b.快速从零开始构建一个真实示例:肿瘤图像分类器;c.轻松学会使用PyTorch实现各种神经网络模型来解决具体的深度学习问题;d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。4.PyTorch联合创作者SoumithChintala作序推荐!5.书中所有代码都是基于Python3.6及以上的版本编写的,提供源代码下载。
动手学强化学习 电子书
.名家作品:上海交通大学ACM班创始人俞勇教授、博士生导师张伟楠副教授、APEX实验室博士生沈键编写;.理论扎实:基于上交大ACM班的人工智能专业课程构建强化学习的学习体系;.配套资源丰富:在线代码运行环境+在线视频课程+在线讨论区+在线习题+配套课件;.多位业内大咖力荐:字节跳动人工智能实验室总监李航、1986年图灵奖得主JohnHopcroft、北京大学数学科学学院统计学教授张志华、伦敦大学学院计算机科学系讲席教授汪军、亚马逊资深科学家、《动手学深度学习》作者李沐
深度学习 电子书
深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
深度学习与飞桨PaddlePaddle Fluid实战 电子书
飞桨PaddlePaddle是百度推出的深度学习框架,不仅支撑了百度公司的很多业务和应用,而且随着其开源过程的推进,在其他行业得到普及和应用。 本书基于2019年7月4日发布的飞桨PaddlePaddle Fluid 1.5版本(后续版本会兼容旧版本),以真实案例介绍如何应用飞桨PaddlePaddle解决主流的深度学习问题。 本书适合对人工智能感兴趣的学生、从事机器学习相关工作的读者阅读,尤其适合想要通过飞桨PaddlePaddle掌握深度学习应用技术的研究者和从业者参考。 本书包括以下内容: ● 飞桨PaddlePaddle 的核心设计思想; ● PaddlePaddle在MNIST上进行手写数字识别; ● 图像分类网络实现案例; ● “天网”中目标检测和像素级物体分割的实现; ● NLP技术应用案例 :word2vec、情感分析、语义角色标注及机器翻译; ● Paddle-Mobile与Anakin框架等高级主题; ● 飞桨PaddlePaddle与TensorFlow、Caffe框架的常用层对比。
Python深度学习(第2版) 电子书
Keras之父、谷歌人工智能研究员弗朗索瓦·肖莱执笔,深度学习领域力作。
Java编程动手学 电子书
本书共12章,首先介绍Java语言的基本情况;然后介绍如何在Windows、Linux和macOS三种操作系统中安装Java和集成开发环境以及JShell交互式编程;接着讲解Java的一些常见概念和数据类型以及Java的八大类运算符、各种表达式和语句;之后介绍类和对象这两个核心概念,数组与集合的概念和使用,Java常用工具类,以及Java的异常处理、注解以及泛型机制;最后讲解Java的文件与I/O
JavaScript深度学习 电子书
深度学习扛鼎之作《Python深度学习》姊妹篇,前端工程师不可错过的AI入门书。