跟着迪哥学:Python数据分析与机器学习实战 电子书

跟着迪哥学:Python数据分析与机器学习实战

9.9开通会员

编辑推荐

本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。

内容简介

本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。

全书共20章,大致分为4个部分。第一部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。

本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。

章节目录

展开全部

跟着迪哥学:Python数据分析与机器学习实战是2019年由人民邮电出版社出版,作者唐宇迪。

温馨提示:
1.本电子书已获得正版授权,由出版社通过知传链发行。
2.该电子书为虚拟物品,付费之后概不接收任何理由退款。电子书内容仅支持在线阅读,不支持下载。
3.您在本站购买的阅读使用权仅限于您本人阅读使用,您不得/不能给任何第三方使用,由此造成的一切相关后果本平台保留向您追偿索赔的权利!版权所有,后果自负!
得书感谢您对《跟着迪哥学:Python数据分析与机器学习实战》关注和支持,如本书内容有不良信息或侵权等情形的,请联系本网站。

你可能喜欢
机器学习实战 电子书
《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。
机器学习与Python实践 电子书
机器学习理论实践全书,12章内容丰富,适合各层次读者。
Python机器学习开发实战 电子书
Python机器学习入门,以实战为重点,配有大量代码和案例,简单、快速、易学。
机器学习 电子书
机器学习基础与高级内容全面讲解,实例丰富,易于学习巩固。
Python高手修炼之道:数据处理与机器学习实战 电子书
适读人群 :1.没有编程知识的新手 不同于一般的基础语法讲解教程,本书并未将Python 开发限定于某个集成开发工具(IDE)中,而是采用交互式编程的方式来强化读者对语言特性的理解,帮助新手读者真正理解Python 语言和Python 编程。2.从未接触过Python 语言,但了解一点编程知识的初学者 本书通过对基础知识高度的提炼和概括,以避免初学者陷入低级且冗长的细节知识点而心生懈怠;同时,本书为初学者规划了从初级到高级的编程技能提升路线图。3.具有一定基础的Python 程序员 本书可以作为案头工具书来使用。本书从基础语法、基本技能讲起,涵盖了科学计算、数据处理、机器学习等领域,示例代码涉及30 余个模块的使用。 构建从Python入门到数据分析到机器学习的路线图,入门有章可循; 1.讲解独到,常见盲点趣解析 作者基于多年的经验积累,善于总结概括初学Python过程中的误区。 2.内容全面,常用工具全涵盖 书中介绍的Python工具包覆盖Numpy、Matplotlib、Pandas、SciPy、Scikit-Learn,方便读者拓展实用技能、掌握工作利器。 3.拓展训练,重点知识有强化 语感训练100题、Python内置函数(类)手册、从新手到高手的100个模块,强化知识点的掌握。 4.代码完整,随时动手可复现 本书提供了完整、可验证的代码,方便读者动手练习并强化理解。
大数据技术基础——基于Hadoop与Spark 电子书
将Hadoop和Spark组合起来进行剖析,呈现完整的大数据技术方案。
Python机器学习经典实例 电子书
用流行的Python库scikitlearn解决机器学习问题。
深度学习原理与实践 电子书
(1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。 (2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。 (3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。 (4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。 (5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。 将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。 --唐春明 广州大学数学与信息学科学院副院长 本书从原理、方法、实践这 3 个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。 --杨刚 西安电子科技大学教授 近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对 ANN、CNN、RNN 等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐! --吴健之 腾讯音乐高级工程师 作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看! --张瑞 中软国际高级产品经理