100 条"Python数据挖掘实战(全彩)(博文视点出品)"搜索结果
  • 方小敏
  • 讲解每个算法的原理时,尽可能避免使用晦涩难懂的统计术语或模型公式。在每个算法的后面演示一个实用的案例,方便大家理解和掌握每种算法的使用。力求解决工作中的数据挖掘典型业务问题。
Python数据挖掘实战(微课版) 电子书
  • 王磊
  • 数据挖掘旨在发现蕴含在数据中的有价值的数据模式、知识或规律,是目前非常热门的研究领域。理解数据挖掘模型的原理、方法并熟练掌握其实现技术是数据挖掘从业者必备的能力。本书从理论模型和技术实战两个角度,全面讲述数据挖掘的基本流程、模型方法、实现技术及案例应用,帮助读者系统地掌握数据挖掘的核心技术,培养读者从事数据挖掘工作的基本能力。全书共12章,主要内容包括数据探索、数据预处理、特征选择、基础分类模型及
Python数据分析与挖掘实战 电子书
  • 翟世臣,张良均 主编
  • 本书共11章,分为基础篇(第1-5章)和实战篇(第6-11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识:实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预测、电视产品个性化推荐,以及基于TipDM大数据挖掘建模平台实现金融服务机构资金流量预测。本书大部分章节包含实训和课后
Python金融数据分析与挖掘实战 电子书
  • 黄恒秋
  • 深入浅出地为你介绍如何使用Python进行金融数据分析、挖掘和量化投资的全过程。
Python数据分析与挖掘 电子书
  • 杨玲
  • 本书面向大数据应用型人才,以任务为导向,系统地介绍Python数据分析与挖掘的常用技术与真实案例。全书共7章,第1、2章介绍Python数据分析的常用模块及其应用,涵盖NumPy数值计算模块、pandas数据分析模块,较为系统地阐述Python数据分析的方法;第3、4章介绍轻量级的数据交换格式JSON和连接MySQL数据库的pymysql模块,并以此进行数据综合案例的分析;第5章介绍Matplot
Python数据处理与挖掘 电子书
  • 吴振宇 李春忠 李建锋
  • 本书以构建完整的知识体系为目标,按照从简单到复杂的思路,贯穿了数据处理与挖掘的各个环节,具体包括:Python快速入门、Python数据类型、Python常用模块、Python数据获取、Python数据挖掘基础、Python数据挖掘算法、Python大数据挖掘和Python数据可视化。此外,针对各知识点,全书均设计了相应的Python案例,并给出了实现代码、效果图以及相应的解释,以强化读者对各知识
Python大数据分析与挖掘实战(微课版) 电子书
  • 黄恒秋 莫洁安 谢东津 张良均 苏颖
  • 本书以应用为导向,将理论与实践相结合,深入浅出地介绍了利用Python进行大数据分析与挖掘的基本知识,以及如何将其应用到具体领域的方法。本书分3篇:基础篇、案例篇和提高篇。基础篇(第1章-第6章)主要介绍Python基础知识及应用于科学计算、数据处理、数据可视化、机器学习、深度学习等方面的基础知识;案例篇(第7章-第11章)主要介绍利用Python进行金融、地理信息、交通、文本分析、图像识别等领域
Python数据科学实战 电子书
  • 本书主要从实战角度讲述了如何处理、分析和可视化数据,如何用数据建立各种统计学或机器学习模型。本书首先介绍如何使用Python代码获取、转换和分析数据;接着讲述如何使用Python中的数据结构和第三方库;然后展示如何以各种格式加载数据,如何对数据进行分组与汇总,如何创建图表和可视化数据;最后讨论如何解决实际的问题。本书适合希望使用Python处理和分析数据的开发人员阅读,也可供计算机相关专业的师生参
数据挖掘 电子书
  • 宋万清
  • 本书着力于介绍数据挖掘基础知识、基本原理、常用算法,主要内容包括数据挖掘概述、数据的描述与可视化、数据的采集和预处理、数据的归约、关联规则挖掘、分类与预测、非线性预测模型、聚类分析、深度学习简介、使用Weka进行数据挖掘。本书通俗易懂,注重基础知识、基本原理和基本方法,注重启发和引申,以培养学生独立思考和独立发现的能力。  本书适合作为数据科学与大数据、信息管理、统计等专业的本科层次基础课教材,也
数据挖掘——基于R语言的实战 电子书
  • 张俊妮
  • 本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。
Python数据可视化实战 电子书
  • 刘礼培
  • 本书以实践出发,全面地介绍数据可视化的流程和Python数据可视化的应用,并详细阐述使用Python解决企业实际问题的方法。全书共8章,分为基础模块(第1-5章)和实战模块(第6-8章)。基础模块包括Python数据可视化概述、数据的读取与处理、Matplotlib数据可视化基础、用seaborn绘制进阶图形、pyecharts交互式图形绘制;实战模块包括广电大数据可视化项目实战、新零售智能销售数
Python商务数据分析与实战 电子书
  • 何伟,张良均 主编
  • |a本书以Python数据分析常用技术与真实案例相结合的方式,介绍Python商务数据分析应用的重要内容。全书共10章,内容包括:商务数据分析概述、Python数据分析简介、数据获取、探索性分析、数据预处理等。
Python数据分析入门与实战 电子书
  • 开课吧组编 杨国俊 张植皓 潘海超 等编著
  • 本书系统地描述了如何利用Python语言进行数据分析。由浅入深的编写方式可以帮助读者轻松愉快地进入数据的世界。全书从理论到实践、从基础语法到科学计算库,循序渐进地讲解了Python数据分析所需要学习的技能。搭配项目实战帮助读者更好、更快地掌握Python数据分析知识点。此外,还全面介绍了数据分析的必知必会技能。本书提供代码资源下载服务,每章均配有重要知识点串讲视频。本书不仅适合零基础喜欢数据分析的
Python数据分析入门与实战 电子书
  • 刘麟 编著
  • 掌握数据分析技巧,运用强大的Python工具,解决工作中繁琐的数据问题。
数据挖掘及其应用 电子书
  • 李燕
  • 随着互联网、云计算和人工智能等高科技信息技术的飞速发展,人类已迈入大数据时代,但很多时候我们会感到被数据淹没,却缺乏知识的困境,并没有“得数据者得天下”的能力,我们迫切需要从海量数据中,找到值得参考的样型或规则,转换成有价值的信息或知识,创造更多新价值,因此,数据挖掘成了我们提取数据信息的必要窗口。  本书共8章,主要介绍了数据挖掘的理论方法与实践应用,内容涵盖了关联规则挖掘、决策树分析、聚类分析
Python数据分析、挖掘与可视化(慕课版) 电子书
  • 董付国
  • 1.Python零基础,轻松学会数据分析与挖掘2.编码、分析、挖掘,数据分析全流程一次搞定3.微课视频,扫码即可观看,重点难点逐个击破本书适于统计学、数学、经济学、金融学、管理学以及相关理工科专业的本科生、研究生使用,也能够提高从事数据咨询、研究或分析等人士的专业水平和技能。
Python数据分析基础与案例实战 电子书
  • 张良均 主编
  • 本书以Python数据分析的常用技术与交通行业真实案例相结合的方式,深入浅出地介绍了Python数据分析与挖掘技术的重要内容。全书共10章,内容包括绪论、Python数据分析简介、数据获取、数据探索、数据预处理、构建模型、运输车辆驾驶行为分析、公交车站点设置优化分析、铁路站点客流量预测,以及基于TipDM大数据挖掘建模平台实现运输车辆驾驶行为分析。本书大部分章节包含课后习题,通过练习和操作实践,读
大数据时代的数据挖掘 电子书
  • 李涛
  • (1)内容全面,覆盖当前数据挖掘的主要应用。在介绍每个应用案例时,详细阐述应用的背景,该领域中数据的来源和特点,数据采集与预处理方式,应用领域中数据挖掘的任务和实施数据挖掘技术的难点。同时提供相应的数据挖掘算法分析、工具设计以及系统实现。(2)条理清晰、便于理解。一方面,面向热爱和关心数据挖掘技术的学术界和工业界读者,帮助他们更好地理解研究的目的和应用的基础;另一方面,让没有太多相关技术背景的读者可以通过阅读本书能够了解数据挖掘的意义和价值,可以看出数据挖掘是如何被广泛地应用于实际案例并成为解决各种问题的核心工具。
机器学习与数据挖掘 电子书
  • 王璐烽
  • 本书以项目实践作为主线,结合必需的理论知识,以任务的形式进行内容设计,每个任务都包含任务描述及任务实施的步骤,读者按照实施步骤进行操作就可以完成相应的学习任务,从而不断提升项目实践能力。本书主要内容涉及机器学习的基础知识,模型评估与选择,回归、分类、聚类等机器学习算法,数据挖掘的基础知识,数据分析与应用,以及通过用户行为分析预测项目学习如何将机器学习与数据挖掘应用到实际中。本书适合使用机器学习与数
Python数据分析案例实战(慕课版) 电子书
  • 王浩 袁琴 张明慧
  • 全书共分10章,内容包括数据分析基础、NumPy模块实现数值计算、pandas模块实现统计分析、Maplotlib模块实现数据可视化、客户价值分析、销售收入分析与预测、二手房数据分析预测系统、智能停车场运营分析系统、影视作品分析和看店宝。
大数据:挖掘数据背后的真相 电子书