100 条"深度实践Spark机器学习"搜索结果
  • 吴茂贵
  • 本书系统讲解了Spark机器学习的技术、原理、组建、算法,以及构建Spark机器学习系统的方法、流程、标准和规范。
深度学习原理与实践 电子书
  • 陈仲铭
  • (1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。(2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。(3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。(4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。(5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。--唐春明 广州大学数学与信息学科学院副院长本书从原理、方法、实践这3个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。--杨刚 西安电子科技大学教授近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对ANN、CNN、RNN等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐!--吴健之 腾讯音乐高级工程师作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看!--张瑞 中软国际高级产品经理
深度学习算法与实践 电子书
  • 于子叶
  • 本书旨在为读者建立完整的深度学习知识体系。全书内容包含3个部分,第一部分为与深度学习相关的数学基础;第二部分为深度学习的算法基础以及相关实现;第三部分为深度学习的实际应用。
机器学习与Python实践 电子书
  • 黄勉
  • 机器学习理论实践全书,12章内容丰富,适合各层次读者。
Spark最佳实践 电子书
  • 林世飞
  • 腾讯专家首次分享Spark最新实践,基于真实数据,用案例分析全面解读大数据应用设计!
深度学习入门与TensorFlow实践 电子书
  • 林炳清
  • 基于TensorFlow2,系统讲述如何搭建、训练和应用深度学习模型。
深度学习——原理、模型与实践 电子书
  • 主编
  • 本书是深度学习领域的入门教材,全面阐述了深度学习的知识体系,涵盖人工智能的基础知识以及深度学习的基本原理、模型、方法和实践案例,使读者掌握深度学习的相关知识,提高以深度学习方法解决实际问题的能力。全书内容包括人工智能基础、机器学习基础、深度学习主要框架、深度神经网络、卷积神经网络、循环神经网络、自编码器与生成对抗网络。
深度学习原理与 TensorFlow实践 电子书
  • 黄理灿
  • 本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
人工智能深度学习基础实践 电子书
  • 张健,常城主编
  • 本书分为人工智能产品研发、深度学习数据应用、深度学习基础应用3篇共10个项目,内容包括:人工智能需求管理、设计人工智能产品、人工智能开发平台应用、数据采集工程应用、数据处理工程应用、数据标注工程应用等。
人工智能深度学习综合实践 电子书
  • 罗卿,常城主编
  • 本书较为系统地介绍深度学习模型训练、计算机视觉模型应用、自然语言处理模型应用等技术。全书共9个项目,包括深度学习全连接神经网络应用、深度学习卷积神经网络应用、深度学习模型训练——循环神经网络应用、计算机视觉模型数据准备、计算机视觉模型训练与应用、计算机视觉模型部署、自然语言处理预训练模型数据准备、自然语言处理预训练模型训练与应用、自然语言处理模型部署等。本书以满足企业用人需求为导向、以岗位技能和综
深度学习 电子书
  • [美]伊恩·古德费洛
  • 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
  • 徐立芳
  • 本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。
Python实战速成手册:数据分析+机器学习+深度学习 电子书
  • 方勇 著
  • 本书基于Python语言,介绍了数据分析、机器学习、深度学习等内容,涉及统计学基础、Python基础、Python面向对象入门、在Python中操作MySQL、Pandas、Matplotlib、人工智能、Scikit-learn、神经网络等。书中包括大量代码和综合练习,以及丰富的实战案例。
机器学习 电子书
  • 董亮
  • 机器学习基础与高级内容全面讲解,实例丰富,易于学习巩固。
JavaScript深度学习 电子书
  • 尼尔森
  • 深度学习扛鼎之作《Python深度学习》姊妹篇,前端工程师不可错过的AI入门书。
Python 深度学习 电子书
  • 吕云翔 刘卓然 关捷雄 等编著
  • 《Python深度学习》以深度学习框架为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架(以PyTorch为例)基础、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信
机器学习实战 电子书
  • [美]PeterHarrington
  • 《机器学习实战》面向日常任务的高效实战内容,介绍并实现机器学习的主流算法。
机器学习基础 电子书
  • 编著
  • 近年来人工智能技术蓬勃发展,人工智能正在改变我们的生活。为了让读者在不需要掌握太多数学和计算机科学知识的情况下,能够快速上手,使用Python语言实现常用的机器学习算法,并解决一些实际的问题,我们策划并出版本书。本书共14章,内容涵盖基本的机器学习概念和环境搭建,目前各个领域中的热门算法,以及数据预处理、模型评估和文本数据分析等。希望本书可以让读者轻松入门,在动手实践的过程中找到乐趣。本书可以作为
Python机器学习 电子书
  • 郭羽含 陈虹 肖成龙 主编
  • 《Python机器学习》从实用的角度出发,整合Python语言基础、数据分析与可视化、机器学习常用算法等知识。内容从*基本的Python编程基础入手,由浅入深、循序渐进地讲授NumPy库和Matplotlib库,以及复杂的机器学习基本理论和算法,并突出知识的实用性和可操作性。《Python机器学习》力求以浅显的语言讲解复杂的知识,以直观的案例辅助读者理解,并以图表形式展示代码和运行结果,配合习题巩
实用机器学习 电子书
  • 孙亮 黄倩
  • 大数据时代为机器学习的应用提供了广阔的空间,各行各业涉及数据分析的工作都需要使用机器学习算法。本书围绕实际数据分析的流程展开,着重介绍数据探索、数据预处理和常用的机器学习算法模型。本书从解决实际问题的角度出发,介绍回归算法、分类算法、推荐算法、排序算法和集成学习算法。在介绍每种机器学习算法模型时,书中不但阐述基本原理,而且讨论模型的评价与选择。为方便读者学习各种算法,本书介绍了R语言中相应的软件包
机器学习实战 电子书
  • 编著
  • 本书共11章,从推荐系统的发展历史、基本构成开始,依次剖析推荐系统的内容召回、协同过滤召回、深度学习召回中具有代表性的模型;再从经典排序模型到基于深度学习的排序,顺势介绍会话推荐、强化学习推荐及工业级推荐,搭建了完整的推荐系统技术体系,这是一个由浅入深的系统学习过程。