100 条"深度学习企业实战:基于R语言"搜索结果
  • [英]尼格尔·刘易斯
  • 侧重于R语言与深度学习的结合,旨在通过通俗易懂的语言和实用技巧的介绍,帮助读者了解深度学习在商业领域的应用。
数据挖掘——基于R语言的实战 电子书
  • 张俊妮
  • 本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。
Python深度学习实战——基于Pytorch 电子书
  • 主编
  • 本书以深度学习框架PyTorch为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了基本机器学习操作的原理和在深度学习框架下的实践步骤。全书共16章,主要分别介绍了深度学习基础知识、深度学习框架及其对比,机器学习基础知识,深度学习框架基础,Logistic回归,多层感知器,计算机视觉,自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。??本书适合Pyth
深度学习自然语言处理实战 电子书
  • 开课吧 组编 张楠 苏南 王贵阳 等编著
  • 近年来,基于深度学习方法的自然语言处理(NLP)已逐渐成为主流。本书共8章,主要介绍自然语言处理任务中的深度学习技术,包含深度学习理论基础、深度学习的软件框架、语言模型与词向量、序列模型与梯度消失/爆炸、卷积神经网络在NLP领域的应用、Seq2Seq模型与Attention机制、大规模预训练模型、预训练语言模型BERT,还给出了自然语言处理技术的高级应用和开发实例,并收录了基于PyTorch深度学
R语言编程:基于tidyverse 电子书
  • 张敬信
  • 一本基于tidyverse入门R语言编程的书。
PyTorch深度学习实战 电子书
  • [美]伊莱·史蒂文斯(Eli,Stevens),[意]卢卡·安蒂加(Luca Antiga),等
  • 1.PyTorch核心开发者教你使用PyTorch创建神经网络和深度学习系统的实用指南。2.详细讲解整个深度学习管道的关键实践,包括PyTorch张量API、用Python加载数据、监控训练以及对结果进行可视化。3.PyTorch核心知识+真实、完整的案例项目,快速提升读者动手能力:a.全面掌握PyTorch相关的API的使用方法以及系统掌握深度学习的理论和方法;b.快速从零开始构建一个真实示例:肿瘤图像分类器;c.轻松学会使用PyTorch实现各种神经网络模型来解决具体的深度学习问题;d.章尾附有“练习题”,巩固提升所学知识;更有配套的代码文件可下载并动手实现。4.PyTorch联合创作者SoumithChintala作序推荐!5.书中所有代码都是基于Python3.6及以上的版本编写的,提供源代码下载。
文本数据挖掘——基于R语言 电子书
  • 黄天元
  • 文本是一种特殊的非结构化数据,在当今的大数据时代,其价值日趋凸显。本书利用开源而强大的R软件,对文本数据挖掘的概念、技术及技巧进行了系统的介绍。本书共11章,内容包括:走进文本数据挖掘,R语言快速入门,字符串的基本处理,用好正则表达式,导入各类文本数据,对各类文本数据进行预处理,文本特征提取的4种方法,基于机器学习的文本分类方法,文本情感分析,文本可视化,文本数据挖掘项目实践。本书还提供了丰富的应
数据可视化——基于R语言 电子书
  • 贾俊平
  • 本书以R语言为实现工具,以数据可视化分析为导向,结合实际案例介绍数据可视化方法。全书共8章,第1章介绍数据可视化概述以及R语言数据处理的基本技能;第2章介绍R语言绘图基础,重点介绍R语言传统绘图包graphics中的绘图函数及基本使用方法;第3章介绍类别数据的可视化方法;第4章介绍数据分布特征的可视化方法;第5章介绍变量间关系的可视化方法;第6章介绍样本相似性的可视化方法;第7章介绍时间序列的可视
深度学习:基于Python语言和TensorFlow平台(视频讲解版) 电子书
  • 谢琼
  • 本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
PyTorch与深度学习实战 电子书
  • 胡小春
  • 本书以PyTorch深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用PyTorch实现深度学习应用的重要内容。本书共7章,内容包括深度学习概述、PyTorch深度学习通用流程、PyTorch深度学习基础、手写汉字识别、文本生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现文本生成等。本书大部分章包含实训和课后习题,希望通过练习和操作实践,帮助读者巩固所学的内
Keras与深度学习实战 电子书
  • 张良均 主编
  • 本书以Keras深度学习的常用技术与真实案例相结合的方式,深入浅出地介绍使用Keras进行深度学习的重要内容。全书共7章,内容包括深度学习概述、Keras深度学习通用流程、Keras深度学习基础、基于RetinaNet的目标检测、基于LSTM网络的诗歌生成、基于CycleGAN的图像风格转换、基于TipDM大数据挖掘建模平台实现诗歌生成等。本书大部分章包含实训和课后习题,通过练习和操作实践,读者可
TensorFlow 2深度学习实战 电子书
  • 张良均
  • 本书以深度学习的常用技术与TensorFlow2真实案例相结合的方式,深入浅出地介绍TensorFlow2实现深度学习的重要内容。全书共7章,分为基础篇(第1~3章)和实战篇(第4~7章),基础篇内容包括深度学习概述、TensorFlow2快速入门、深度神经网络原理及实现等基础知识;实战篇内容包括4个案例,分别为基于CNN的门牌号识别、基于LSTM网络的语音识别、基于CycleGAN的图像风格转换
深度学习与TensorFlow实战 电子书
  • 李建军 王希铭 潘勉 等
  • 本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到
深度强化学习实战 电子书
深度学习实战之PaddlePaddle 电子书
  • 潘志宏 王培彬 万智萍 邱泽敏
  • 内容提要本书全面讲解了深度学习框架PaddlePaddle,并结合典型案例,阐述了PaddlePaddle的具体应用。本书共15章。第1章介绍了深度学习及其主流框架;第2章介绍了几种不同的PaddlePaddle安装方式;第3章使用MNIST数据集实现手写数字识别;第4章介绍CIFAR彩色图像识别;第5章介绍了自定义数据集的识别;第6章介绍了验证码的识别;第7章介绍了场景文字的识别;第8章实现了验
R语言与数据分析实战 电子书
  • 朱顺泉
  • 本书共13章,主要包括:数据分析概述及R语言环境,R语言的数据对象及其类型,R语言数据存储与读取,R语言编程,R语言可视化,R语言描述性统计,R语言参数估计,R语言参数假设检验等内容。
R语言医学数据分析实战 电子书
  • 赵军 编著
  • 以医学数据为例,讲解如何使用R进行数据分析。
深度学习经典案例解析(基于MATLAB) 电子书
  • 赵小川
  • 《深度学习经典案例解析(基于MATLAB)》分为“基础篇”“应用篇”和“实战篇”。通过17个案例循序渐进地介绍了深度学习网络的构建、训练、应用,以及如何基于MATLAB快速生成可执行的C、C++代码并在硬件上部署实现,内容讲解由浅及深、层层递进。本书所讲解的案例均配有代码实现,并对代码进行了详细注解,读者可通过阅读代码对本书讲解的内容进行更加深入的了解。《深度学习经典案例解析(基于MATLAB)》
深度学习程序设计实战 电子书
  • 方林 编著
  • 本书以Python语言和Tensorflow为工具,由浅入深地讲述了深度学习程序设计的基本原理、算法和思考问题的方法,内容包括自顶向下的程序设计、递归程序设计、面向对象的程序设计、反向传播算法、三层神经网络、卷积神经网络、循环神经网络、生成式对抗网络和目标检测等。
PaddlePaddleFluid深度学习入门与实战 电子书
  • 潘志宏
  • 本书全面讲解PaddlePaddleFluid框架在深度学习领域的应用。
Python深度学习与项目实战 电子书
  • 本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。