100 条"深度学习实践指南:基于R语言"搜索结果
R语言编程:基于tidyverse 电子书
  • 张敬信
  • 一本基于tidyverse入门R语言编程的书。
数据可视化——基于R语言 电子书
  • 贾俊平
  • 本书以R语言为实现工具,以数据可视化分析为导向,结合实际案例介绍数据可视化方法。全书共8章,第1章介绍数据可视化概述以及R语言数据处理的基本技能;第2章介绍R语言绘图基础,重点介绍R语言传统绘图包graphics中的绘图函数及基本使用方法;第3章介绍类别数据的可视化方法;第4章介绍数据分布特征的可视化方法;第5章介绍变量间关系的可视化方法;第6章介绍样本相似性的可视化方法;第7章介绍时间序列的可视
数据挖掘——基于R语言的实战 电子书
  • 张俊妮
  • 本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。
文本数据挖掘——基于R语言 电子书
  • 黄天元
  • 文本是一种特殊的非结构化数据,在当今的大数据时代,其价值日趋凸显。本书利用开源而强大的R软件,对文本数据挖掘的概念、技术及技巧进行了系统的介绍。本书共11章,内容包括:走进文本数据挖掘,R语言快速入门,字符串的基本处理,用好正则表达式,导入各类文本数据,对各类文本数据进行预处理,文本特征提取的4种方法,基于机器学习的文本分类方法,文本情感分析,文本可视化,文本数据挖掘项目实践。本书还提供了丰富的应
深度学习:基于Python语言和TensorFlow平台(视频讲解版) 电子书
  • 谢琼
  • 本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
Python深度学习实战——基于Pytorch 电子书
  • 主编
  • 本书以深度学习框架PyTorch为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了基本机器学习操作的原理和在深度学习框架下的实践步骤。全书共16章,主要分别介绍了深度学习基础知识、深度学习框架及其对比,机器学习基础知识,深度学习框架基础,Logistic回归,多层感知器,计算机视觉,自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。??本书适合Pyth
深度学习原理与实践 电子书
  • 陈仲铭
  • (1)大量图例,简单易懂。作者亲自绘制了大量插图,力求还原深度学习的算法思想,分解和剖析晦涩的算法,用图例来表示复杂的问题。生动的图例也能给读者带来阅读乐趣,快乐地学习算法知识,体会深度学习的算法本质。(2)简化公式,生动比喻。深度学习和机器学习类的书中通常会有大量复杂冗长的算法公式,为了避免出现读者读不懂的情况,本书尽可能地统一了公式和符号,简化相关公式,并加以生动的比喻进行解析。在启发读者的同时,锻炼读者分析问题和解决问题的能力。(3)算法原理,代码实现。在介绍深度学习及相关算法的原理时,不仅给出了对应的公式,还给出了实现和求解公式的代码,让读者明确该算法的作用、输入和输出。原理与代码相结合,使得读者对深度学习的算法实现更加具有亲切感。(4)深入浅出,精心剖析。理解深度学习需要一定的机器学习知识,本书在D1章介绍了深度学习与机器学习的关系,并简要介绍了机器学习的内容。在内容安排上,每章依次介绍模型框架的应用场景、结构和使用方式,最后通过真实的案例去全面分析该模型结构。目的是让读者可以抓住深度学习的本质。(5)入门实践,案例重现。每一章最后的真实案例不是直接堆砌代码,而是讲解使用该算法模型的原因和好处。从简单的背景知识出发,使用前文讲解过的深度学习知识实现一个实际的工程项目。实践可以用于及时检验读者对所学知识的掌握程度,为读者奠定深度学习的实践基础。将一本技术书籍写得通俗易懂谈何容易,但《深度学习原理与实践》这本书确实做到了。书中对近年来火热的深度学习理论知识进行简单剖析,化繁为简,没有局限于坐而论道,而是将实例和数学理论相结合,让读者能够快速理解各种模型并上手实践,值得细读。--唐春明 广州大学数学与信息学科学院副院长本书从原理、方法、实践这3个维度系统地介绍了深度学习的方方面面,内容详实,解读清晰,细节与全貌兼顾,既适合初学者阅读,也可以作为深入研究的参考用书。--杨刚 西安电子科技大学教授近年来出版的深度学习相关图书中,本书是我见过非常有指导意义的中文书籍之一。本书对ANN、CNN、RNN等模型进行深入浅出的介绍,引入大量图例和简化后的公式,让算法浅显易懂。每一章的实践内容都给人惊喜,强烈推荐!--吴健之 腾讯音乐高级工程师作为产品经理,我能看懂的深度学习书籍实在太少了。本书恰到好处,插图丰富直观,数学公式简练,很喜欢此类风格的图书,易懂好学。即使你不是程序员或算法专家,该书也值得一看!--张瑞 中软国际高级产品经理
深度学习算法与实践 电子书
  • 于子叶
  • 本书旨在为读者建立完整的深度学习知识体系。全书内容包含3个部分,第一部分为与深度学习相关的数学基础;第二部分为深度学习的算法基础以及相关实现;第三部分为深度学习的实际应用。
深度学习经典案例解析(基于MATLAB) 电子书
  • 赵小川
  • 《深度学习经典案例解析(基于MATLAB)》分为“基础篇”“应用篇”和“实战篇”。通过17个案例循序渐进地介绍了深度学习网络的构建、训练、应用,以及如何基于MATLAB快速生成可执行的C、C++代码并在硬件上部署实现,内容讲解由浅及深、层层递进。本书所讲解的案例均配有代码实现,并对代码进行了详细注解,读者可通过阅读代码对本书讲解的内容进行更加深入的了解。《深度学习经典案例解析(基于MATLAB)》
深度学习自然语言处理实战 电子书
  • 开课吧 组编 张楠 苏南 王贵阳 等编著
  • 近年来,基于深度学习方法的自然语言处理(NLP)已逐渐成为主流。本书共8章,主要介绍自然语言处理任务中的深度学习技术,包含深度学习理论基础、深度学习的软件框架、语言模型与词向量、序列模型与梯度消失/爆炸、卷积神经网络在NLP领域的应用、Seq2Seq模型与Attention机制、大规模预训练模型、预训练语言模型BERT,还给出了自然语言处理技术的高级应用和开发实例,并收录了基于PyTorch深度学
深度学习的数学——使用Python语言 电子书
深度学习——原理、模型与实践 电子书
  • 主编
  • 本书是深度学习领域的入门教材,全面阐述了深度学习的知识体系,涵盖人工智能的基础知识以及深度学习的基本原理、模型、方法和实践案例,使读者掌握深度学习的相关知识,提高以深度学习方法解决实际问题的能力。全书内容包括人工智能基础、机器学习基础、深度学习主要框架、深度神经网络、卷积神经网络、循环神经网络、自编码器与生成对抗网络。
深度学习原理与 TensorFlow实践 电子书
  • 黄理灿
  • 本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
深度学习入门与TensorFlow实践 电子书
  • 林炳清
  • 基于TensorFlow2,系统讲述如何搭建、训练和应用深度学习模型。
Python与R语言数据科学实践 电子书
  • J.
  • 本书从数据科学的角度,讲解了Python和R的语言特性以及各自的优缺点,介绍了包括包、框架和工作流在内的开源生态系统,分析了Python和R分别适用于哪些业务场景,并通过真实的案例演示如何在单个工作流中集成Python与R,使两种语言充分发挥优势,改善业务应用的效果。本书还提供了Python和R的对照翻译,帮助读者在两种语言间快速切换。本书适合数据科学领域有一定Python或R基础的开发人员阅读,
人工智能深度学习综合实践 电子书
  • 罗卿,常城主编
  • 本书较为系统地介绍深度学习模型训练、计算机视觉模型应用、自然语言处理模型应用等技术。全书共9个项目,包括深度学习全连接神经网络应用、深度学习卷积神经网络应用、深度学习模型训练——循环神经网络应用、计算机视觉模型数据准备、计算机视觉模型训练与应用、计算机视觉模型部署、自然语言处理预训练模型数据准备、自然语言处理预训练模型训练与应用、自然语言处理模型部署等。本书以满足企业用人需求为导向、以岗位技能和综
人工智能深度学习基础实践 电子书
  • 张健,常城主编
  • 本书分为人工智能产品研发、深度学习数据应用、深度学习基础应用3篇共10个项目,内容包括:人工智能需求管理、设计人工智能产品、人工智能开发平台应用、数据采集工程应用、数据处理工程应用、数据标注工程应用等。
R语言编程基础 电子书
  • 林智章
  • 《R语言学习手册》:7章全面介绍R语言及Rattle工具,附课后习题。
深度学习 电子书
  • [美]伊恩·古德费洛
  • 深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。
深度学习 电子书
  • 徐立芳
  • 本书介绍了深度学习的基本概念、算法原理以及实现框架。全书共9章,分别介绍了深度学习的发展历史、神经网络与深度神经网络、卷积神经网络、循环神经网络、深度学习在目标检测和图像描述中的应用、生成对抗网络、深度迁移学习和深度强化学习等,并提供了应用实例。