100 条"大话数据科学——大数据与机器学习实战(基于R语言)"搜索结果
  • 陈文贤
  • 独特方式轻松学数据科学,全彩图表实战演练,覆盖众多算法。
数据挖掘——基于R语言的实战 电子书
  • 张俊妮
  • 本书以深入浅出的语言系统地讲解了数据挖掘的框架和基本方法,主要内容包括:数据挖掘与R语言概述、数据理解、数据准备、关联规则挖掘、聚类分析、线性模型与广义线性模型、神经网络的基本方法、决策树、基于决策树的模型组合、模型评估与比较。本书使用基于R语言的数据挖掘案例贯穿全书,并辅以上机实验和习题,帮助读者熟练使用R语言进行数据挖掘。
R语言与数据分析实战 电子书
  • 朱顺泉
  • 本书共13章,主要包括:数据分析概述及R语言环境,R语言的数据对象及其类型,R语言数据存储与读取,R语言编程,R语言可视化,R语言描述性统计,R语言参数估计,R语言参数假设检验等内容。
数据可视化——基于R语言 电子书
  • 贾俊平
  • 本书以R语言为实现工具,以数据可视化分析为导向,结合实际案例介绍数据可视化方法。全书共8章,第1章介绍数据可视化概述以及R语言数据处理的基本技能;第2章介绍R语言绘图基础,重点介绍R语言传统绘图包graphics中的绘图函数及基本使用方法;第3章介绍类别数据的可视化方法;第4章介绍数据分布特征的可视化方法;第5章介绍变量间关系的可视化方法;第6章介绍样本相似性的可视化方法;第7章介绍时间序列的可视
文本数据挖掘——基于R语言 电子书
  • 黄天元
  • 文本是一种特殊的非结构化数据,在当今的大数据时代,其价值日趋凸显。本书利用开源而强大的R软件,对文本数据挖掘的概念、技术及技巧进行了系统的介绍。本书共11章,内容包括:走进文本数据挖掘,R语言快速入门,字符串的基本处理,用好正则表达式,导入各类文本数据,对各类文本数据进行预处理,文本特征提取的4种方法,基于机器学习的文本分类方法,文本情感分析,文本可视化,文本数据挖掘项目实践。本书还提供了丰富的应
Python与R语言数据科学实践 电子书
  • J.
  • 本书从数据科学的角度,讲解了Python和R的语言特性以及各自的优缺点,介绍了包括包、框架和工作流在内的开源生态系统,分析了Python和R分别适用于哪些业务场景,并通过真实的案例演示如何在单个工作流中集成Python与R,使两种语言充分发挥优势,改善业务应用的效果。本书还提供了Python和R的对照翻译,帮助读者在两种语言间快速切换。本书适合数据科学领域有一定Python或R基础的开发人员阅读,
R语言医学数据分析实战 电子书
  • 赵军 编著
  • 以医学数据为例,讲解如何使用R进行数据分析。
机器学习与数据挖掘 电子书
  • 王璐烽
  • 本书以项目实践作为主线,结合必需的理论知识,以任务的形式进行内容设计,每个任务都包含任务描述及任务实施的步骤,读者按照实施步骤进行操作就可以完成相应的学习任务,从而不断提升项目实践能力。本书主要内容涉及机器学习的基础知识,模型评估与选择,回归、分类、聚类等机器学习算法,数据挖掘的基础知识,数据分析与应用,以及通过用户行为分析预测项目学习如何将机器学习与数据挖掘应用到实际中。本书适合使用机器学习与数
R语言与社会科学调查数据分析 电子书
  • 编著
  • 作者运用R语言,分析中国综合社会调查数据,涵盖了初级的描述性统计、简单的回归模型、中阶的广义线性回归、二值型回归、泊松回归模型、高阶的匹配模型、主成分分析、机器学习等内容。本书通过可复制的代码、模型原理解读和丰富的图表,展现了如何将R语言应用在社会科学的研究中。
机器学习与大数据技术 电子书
  • 牟少敏
  • 本书较为全面地论述了机器学习、深度学习、大数据技术与图像处理技术的基本概念、基础原理和基本方法,以农业为应用场景,力求通缩易懂,深入浅出的介绍了与机器学习、深度学习、大数据技术与图像处理技术问题联系密切的内容。全书主要分为4大部分:机器学习、大数据技术和图像处理技术的基础知识;经典的机器学习基本理论和方法,以及深度学习和大数据未来的发展;实践应用;机器学习和人工智能的数学基础与编程基础。
数据科学导论——基于Python语言(微课版) 电子书
  • 朝乐门
  • 本书共7章,主要介绍数据科学的基础理论、统计学与模型、机器学习与算法、数据可视化、数据加工、大数据技术、数据产品开发及数据科学中的人文与管理等内容。
数据科学商业实战 电子书
Python数据科学实战 电子书
  • 本书主要从实战角度讲述了如何处理、分析和可视化数据,如何用数据建立各种统计学或机器学习模型。本书首先介绍如何使用Python代码获取、转换和分析数据;接着讲述如何使用Python中的数据结构和第三方库;然后展示如何以各种格式加载数据,如何对数据进行分组与汇总,如何创建图表和可视化数据;最后讨论如何解决实际的问题。本书适合希望使用Python处理和分析数据的开发人员阅读,也可供计算机相关专业的师生参
Python高手修炼之道:数据处理与机器学习实战 电子书
  • 许向武
  • 适读人群:1.没有编程知识的新手不同于一般的基础语法讲解教程,本书并未将Python开发限定于某个集成开发工具(IDE)中,而是采用交互式编程的方式来强化读者对语言特性的理解,帮助新手读者真正理解Python语言和Python编程。2.从未接触过Python语言,但了解一点编程知识的初学者本书通过对基础知识高度的提炼和概括,以避免初学者陷入低级且冗长的细节知识点而心生懈怠;同时,本书为初学者规划了从初级到高级的编程技能提升路线图。3.具有一定基础的Python程序员本书可以作为案头工具书来使用。本书从基础语法、基本技能讲起,涵盖了科学计算、数据处理、机器学习等领域,示例代码涉及30余个模块的使用。构建从Python入门到数据分析到机器学习的路线图,入门有章可循;1.讲解独到,常见盲点趣解析作者基于多年的经验积累,善于总结概括初学Python过程中的误区。2.内容全面,常用工具全涵盖书中介绍的Python工具包覆盖Numpy、Matplotlib、Pandas、SciPy、Scikit-Learn,方便读者拓展实用技能、掌握工作利器。3.拓展训练,重点知识有强化语感训练100题、Python内置函数(类)手册、从新手到高手的100个模块,强化知识点的掌握。4.代码完整,随时动手可复现本书提供了完整、可验证的代码,方便读者动手练习并强化理解。
大数据数学基础(R语言描述) 电子书
  • 程丹 张良均
  • 本书全面地讲解了在科学领域运用广泛的数据微积分、线性代数、统计学、数值计算、多元统计分析等数学基础知识。全书共6章:第1章介绍了大数据与数学、数学与R语言的关系;第2章介绍了微积分的基础知识,包括函数、极限、导数、微分、不定积分与定积分及其应用;第3章介绍了线性代数的基础知识,包括矩阵的运算、行列式、特征分解、奇异值分解;第4章介绍了统计学的基础知识,包括数据分布特征、概率论、随机变量的数字特征、
Python实战速成手册:数据分析+机器学习+深度学习 电子书
  • 方勇 著
  • 本书基于Python语言,介绍了数据分析、机器学习、深度学习等内容,涉及统计学基础、Python基础、Python面向对象入门、在Python中操作MySQL、Pandas、Matplotlib、人工智能、Scikit-learn、神经网络等。书中包括大量代码和综合练习,以及丰富的实战案例。
跟着迪哥学:Python数据分析与机器学习实战 电子书
  • 唐宇迪
  • 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
R语言数据分析与挖掘(微课版) 电子书
  • 谢佳标 编著
  • 本书由浅入深,内容丰富。全书共11章,主要内容包括第1章R语言数据分析概述、第2章R语言数据操作基础、第3章数据读写、第4章数据预处理、第5章数据的描述统计分析、第6章数据相关性分析、第7章R语言可视化基础、第8章高级可视化工具、第9章聚类分析、第10章关联规则、第11章分类及预测。
R语言高效能实战:更多数据和更快速度 电子书
  • 本书将目标设定为“在一台笔记本电脑上能够运行”,从单机大型数据集处理策略、提升计算性能、其他工具和技巧3个方面介绍了使用R语言处理数据时的实用方法。主要内容包括数据集占用空间、善用data.table处理数据、数据分块处理、提升硬盘资源使用效率、并行编程技术、提升机器学习性能,以及其他资源管理和提高性能的实用策略。
R语言编程:基于tidyverse 电子书
  • 张敬信
  • 一本基于tidyverse入门R语言编程的书。
数据科学:理论、方法与Python语言实践 电子书
  • 谢健民 黎海波 主编
  • 全书共分为10章,第1-2章介绍了数据科学的基础知识以及数据科学所需的各项技术;第3-5章涵盖了Python的语法基础,函数、模块与组合数据类型,文件读写;第6章介绍了网络爬虫的数据采集及方法;第7-8章重点介绍了数据分析过程中的两个重要模块:numpy和pandas;第9章介绍了数据可视化与应用;第10章结合之前的内容,以一个综合案例进行了实战分析。本书配有电子课件、电子教案、教学大纲、习题答案