得书 - 好书推荐、正版图书免费阅读
首页
书库
排行榜
VIP会员
新书
快讯
注册 | 登录
100 条"神经网络与深度学习——基于TensorFlow框架和Python技术实现"搜索结果
神经网络与深度学习——基于TensorFlow框架和Python技术实现
包子阳
AI热门关键词:Python、TensorFlow、神经网络和深度学习。
电子书
用Python实现深度学习框架
陈震
本书分为三个部分。第一部分是原理篇,实现了MatrixSlow框架的核心基础设施,并基于此讲解了机器学习与深度学习的概念和原理。第二部分是模型篇,介绍了多种具有代表性的模型,包括逻辑回归、多层全连接神经网络、因子分解机、Wide&Deep、DeepFM、循环神经网络以及卷积神经网络,这部分除了着重介绍这些模型的原理、结构以及它们之间的联系外,还用MatrixSlow框架搭建并训练它们以解决实际问题
电子书
深度学习:基于Python语言和TensorFlow平台(视频讲解版)
谢琼
本书基于使用Python语言的TensorFlow深度学习框架进行讲解,帮助你快速入门。
电子书
深度学习与TensorFlow实战
李建军 王希铭 潘勉 等
本书主要讲解深度学习和TensorFlow的实战知识,全书分为10章,主要内容如下:第1章为深度学习概述,包括深度学习的基础知识、深度学习的生产力实现—TensorFlow、数据模型、TensorFlow项目介绍、TensorFlow工作环境的安装与运行;第2章为机器学习概述,讲解机器学习的定义、任务、性能、经验、学习算法、线性回归实例和TensorFlow的完整运行脚本;第3章介绍从生物神经元到
电子书
Python深度学习实战——基于Pytorch
主编
本书以深度学习框架PyTorch为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了基本机器学习操作的原理和在深度学习框架下的实践步骤。全书共16章,主要分别介绍了深度学习基础知识、深度学习框架及其对比,机器学习基础知识,深度学习框架基础,Logistic回归,多层感知器,计算机视觉,自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。??本书适合Pyth
电子书
TensorFlow深度学习基础与应用
杨虹 谢显中 周前能 王智鹏 张安文编著
本书内容包括TensorFlow在Windows操作系统、Linux操作系统、macOS下的安装,TensorFlow静态图、动态图、损失函数、优化器等基础语法,k均值、k近邻、朴素贝叶斯、决策树、支持向量机、人工神经网络、线性回归、逻辑回归、决策树回归等机器学习算法,分类、检测、检索、光学字符识别等图像处理技术,中文分词、命名实体识别等自然语言处理技术,TensorFlow高阶应用等。
电子书
深度学习原理与 TensorFlow实践
黄理灿
本书介绍了深度学习原理与TensorFlow实践。着重讲述了当前学术界和工业界的深度学习核心知识:机器学习概论、神经网络、深度学习。着重讲述了深度学习的实现以及深度学习框架TensorFlow:Python编程基础、TensorFlow编程基础、TensorFlow模型、TensorFlow编程实践、TensorFlowLite和TensorFlow.js、TensorFlow案例--医学应用和S
电子书
深度学习入门与TensorFlow实践
林炳清
基于TensorFlow2,系统讲述如何搭建、训练和应用深度学习模型。
电子书
Keras深度学习与神经网络
肖睿 程鸣萱 编著
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专
电子书
TensorFlow 2深度学习实战
张良均
本书以深度学习的常用技术与TensorFlow2真实案例相结合的方式,深入浅出地介绍TensorFlow2实现深度学习的重要内容。全书共7章,分为基础篇(第1~3章)和实战篇(第4~7章),基础篇内容包括深度学习概述、TensorFlow2快速入门、深度神经网络原理及实现等基础知识;实战篇内容包括4个案例,分别为基于CNN的门牌号识别、基于LSTM网络的语音识别、基于CycleGAN的图像风格转换
电子书
Python 深度学习
吕云翔 刘卓然 关捷雄 等编著
《Python深度学习》以深度学习框架为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了机器学习操作的原理及其在深度学习框架下的实践步骤。全书共16章,分别介绍了深度学习基础知识、深度学习框架及其对比、机器学习基础知识、深度学习框架(以PyTorch为例)基础、Logistic回归、多层感知器、卷积神经网络与计算机视觉、神经网络与自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信
电子书
卷积神经网络的Python实现
单建华 著
一本包含全部代码的参考书零基础学习深度学习基于NumPy的Python语言实现卷积神经网络本书用极少的数学知识,深入浅出地介绍了机器学习、卷积神经网络的相关概念以及实践中特别重要的数据预处理。书中没有借助深度学习库,完全使用Python语言基于NumPy库实现了神经网络和卷积神经网络,并给出了全部代码。为了方便读者理解深度学习和更好地使用深度学习库,如TensorFlow,书中特别对误差反向传播算法和神经网络的优化方法进行了深入分析。在此基础上,本书进一步实现了经典的VGG网络和移动端MobileNetV2网络,同时介绍了GoogLeNet、ResNet和SENet。
电子书
动手打造深度学习框架
李伟
本书基于C++编写,旨在带领读者动手打造出一个深度学习框架。
电子书
TensorFlow深度学习项目实战(深度学习系列)
[美] 卢卡·马萨罗
本书用TensorFlow框架针对现实场景设计深度学习系统,实现有趣的深度学习项目。
电子书
Python深度学习与项目实战
著
本书基于Python以及两个深度学习框架Keras与TensorFlow,讲述深度学习在实际项目中的应用。本书共10章,首先介绍线性回归模型、逻辑回归模型、Softmax多分类器,然后讲述全连接神经网络、神经网络模型的优化、卷积神经网络、循环神经网络,最后讨论自编码模型、对抗生成网络、深度强化学习。
电子书
TensorFlow深度学习从入门到进阶
张德丰 编著
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其支持多种客户端语言下的安装和运行。本书以TensorFlow为导线,进行机器学习,书中每章节都是以理论引出,TensorFlow应用巩固结束,理论与实践相结合,让读者快速掌握TensorFlow机器学习。本书共10章,主要包括内容有:TensorFlow介绍、TensorFlow编辑基础、TensorFlow进阶
电子书
深度学习技术与应用
许桂秋
本书旨在介绍人工智能中深度学习的基础知识,为即将进入深度学习领域进行研究的读者奠定基础。全书共13章,其中,第1~4章为理论部分,第5~13章为应用部分。理论部分介绍了机器学习和深度学习的基本内容,以及TensorFlow开发框架的搭建和使用;应用部分设置了多个项目案例,并介绍了这些案例详细的实现步骤和代码,使读者在练习中熟悉和掌握相关知识的应用方法与技巧。本书采用项目驱动的编写方式,做到了理论和
电子书
Python深度学习:逻辑、算法与编程实战
何福贵 编著
机器学习是人工智能领域一个极其重要的研究方向,而深度学习则是机器学习中一个非常接近AI的分支,其思路在于建立进行分析学习的神经网络,模仿人脑感知与组织的方式,根据输入数据做出决策。深度学习在快速的发展过程中,不断有与其相关的产品推向市场,显然,深度学习的应用将会日趋广泛。《Python深度学习:逻辑、算法与编程实战》是关于深度学习的理论、算法、应用的实战教程,内容涵盖深度学习的语言、学习环境、典型
电子书
人工智能原理与实践:基于Python语言和TensorFlow
张明 何艳珊 杜永文
本书是一本针对高校学生的绝佳TensorFlow学习教材。作者结合众多高质量的代码,生动讲解了TensorFlow的底层原理,并从实际应用问题入手,从实践的角度出发,通过具体的TensorFlow案例程序介绍常见的模型和应用解决办法。同时,在教材中还介绍了模型部署和编程过程中所用到的诸多开发技巧。是学习和掌握人工智能这个最新、最火的IT领域的推荐图书。
电子书
机器视觉与机器学习:算法原理、框架应用与代码实现
宋丽梅 朱新军 编著
《机器视觉与机器学习——算法原理、框架应用与代码实现》内容共10章。第1章为绪论,包括机器视觉的相关概念,机器视觉的发展、基本任务、应用领域与困难,以及马尔视觉理论;第2章为数字图像处理;第3章为相机成像;第4章为相机标定;第5章为ShapefromX;第6章为双目立体视觉;第7章为结构光三维视觉;第8章为深度相机,介绍当前颇受欢迎的Kinect、IntelRealSense等深度相机的知识与相关
电子书
Python深度学习(第2版)
[美] 弗朗索瓦·肖莱
Keras之父、谷歌人工智能研究员弗朗索瓦·肖莱执笔,深度学习领域力作。
文章导航
1
2
3
4
5
>
推荐书籍
相关词语
机器学习
深度学习
Python
计算机
程序设计
人民邮电
软件工具
人工智能
ai
谷歌
tensorflow
神经网络
CNN
意见反馈
我的书架
公众号
关注微信公众号